摘要:单壁碳纳米管(SWCNT)和底物之间的界面热电导很少被表征和理解,这是由于在探测跨这样的NM范围接触的能量传输方面的重大挑战。在这里,我们报告了<6 nm厚的SWCNT束和Si底物之间的界面热电导。用于测量能量传输状态分辨的拉曼,其中拉曼频谱在连续波(CW)下变化,并测量20 ns脉冲激光加热,用于在稳定和短暂的热传导下通过界面热导电持续的稳定和短暂热传导的热响应。由于样品的激光吸收和温度升高不需要知识,因此测量可以实现极端的能力和置信度。在SWCNT束的三个位置中,测量界面热电阻为(2.98±0.22)×10 3,(3.01±0.23)×10 3,以及(1.67±0.27)×10 3 K M W - 1,对应于范围内的热电导率(3.3-3-6.0-×10)。我们的分析表明,SWCNT束和SI基板之间的接触松散,这主要归因于样品的明显不均匀性,这是通过原子力显微镜和拉曼光谱法解决的。对于假定的接触宽度约为1 nm,界面热电阻的阶将为10-6 W m-2 k-1,与报告的机械去角质石墨烯和二维(2D)材料一致。
煤矿井下空气流动时,巷道壁附近存在一个气流速度边界层,该边界层的厚度及分布状况对通过该流动界面进入通风气流的有害、有毒气体的排放以及对煤矿瓦斯爆炸产生重大影响。利用现场测量结果与模拟实验数据,对平壁矿井巷道的气流速度边界层进行了研究,巷道分为无支护、工字钢拱架支护和锚杆锚固支护3种类型。通过参考其他考虑边界层特性的文献研究以及对现场数据和实验数据的分析,得到了各个支护巷道断面相应的气流速度边界层特性。边界层内气流速度的增加服从对数规律:u=aLn(x)+b。结果表明:气流速度边界层厚度随气流中心速度的增大而明显减小,随巷道壁面粗糙度的增大而明显增大。对于三种类型煤矿巷道,考虑中心气流速度的影响,其气流速度分布可用下列方程描述:u=(m1v+n1)Ln(d)+m2v+n2。
这所大学被认为是一所居住大学,一直认为其目的是完整的角色发展和对学生的彻底指导。也许这是世界上唯一的大学,从托儿所和小学到博士/博士后学位的课程在一个围墙的校园内教授和追求,占地550公顷(1360英亩),并拥有雄伟的建筑建筑。它在其区域中融入了一系列的教学学科,其中包括几乎所有可能的科学,工程和技术,医学科学,人文科学,社会科学,社会科学,法律,教育,视觉艺术,表演艺术,梵文Vidya vidya vidya vidya dharm dharm vigyan,vide vetermilitiaral,veter语言科学,图书馆和图书馆,一名杂志,一名杂志,一名杂志,一名杂志,杂志。目前有5个部门在特殊援助计划,7-UGC Innovative / Triea /其他计划和3-DST-FIST(改进科学技术的资金)下获得支持,在DST的Fist Prgramme下得到了4个部门 /学校的支持。,它还拥有四所大学,该大学属于该城市的大学特权。该大学除了在校园里拥有Kendriya Vidyalaya外,还拥有三所学校。此外,Rajiv Gandhi South Campus于2006年成立,该校园位于距离主要校园约75公里的1092.6公顷土地(2700英亩)的校园,位于北阿特尔Pradesh Mirzapur区的Barkachha约75公里。
这所大学被认为是一所居住大学,一直认为其目的是完整的角色发展和对学生的彻底指导。也许这是世界上唯一的大学,从托儿所和小学到博士/博士后学位的课程在一个围墙的校园内教授和追求,占地550公顷(1360英亩),并拥有雄伟的建筑建筑。它在其区域中融入了一系列的教学学科,其中包括几乎所有可能的科学,工程和技术,医学科学,人文科学,社会科学,社会科学,法律,教育,视觉艺术,表演艺术,梵文Vidya vidya vidya vidya dharm dharm vigyan,vide vetermilitiaral,veter语言科学,图书馆和图书馆,一名杂志,一名杂志,一名杂志,一名杂志,杂志。目前有5个部门在特殊援助计划下获得支持,7- UGC创新 / TRIEA /其他计划和3-DST-FIST(改善科学技术的资金)4部门 /学校在DST的Fist Prgramme下得到了支持。,它还拥有四所大学,该大学属于该城市的大学特权。该大学除了在校园里拥有Kendriya Vidyalaya外,还拥有三所学校。此外,Rajiv Gandhi South Campus于2006年成立,该校园位于距离主要校园约75公里的1092.6公顷土地(2700英亩)的校园,位于北阿特尔Pradesh Mirzapur区的Barkachha约75公里。
摘要 为了开发可靠的高速封装,倒装芯片工艺中使用的底部填充材料的特性分析变得越来越重要。底部填充材料通常是一种环氧树脂基材料,可为封装上的集成电路 (IC) 提供热和结构优势。由于如此多的输入和输出 (IO) 彼此靠近,封装上的集成电路可能会出现意外的信号和电源完整性问题。此外,芯片封装只能支持最高频率的信号,在此频率下噪声耦合(例如串扰、开关噪声等)会导致系统故障。垂直互连(例如通孔和焊料凸块)是噪声耦合的主要来源。在每个信号网络之间插入接地参考是不切实际的。对于焊料凸块,噪声耦合取决于底部填充材料的介电常数。因此,表征底部填充材料的介电常数有助于预测信号和电源完整性问题。这种液体或半粘性材料通常通过浸入材料中的开端同轴探针的简单边缘电容模型来表征。但是,开口同轴方法不如基于谐振器的方法准确。需要一种方法来准确提取高频下液体或半粘性材料的介电常数。所提出的方法使用实壁腔体谐振器,其中谐振器用底部填充材料填充并固化。介电特性分析是一个复杂的过程,其中必须了解或准确测量腔体的物理特性。这包括导体的电导率、导体的粗糙度、腔体的尺寸和端口引脚位置。本文讨论了在使用腔体谐振器表征介电体时遇到的一些挑战。这种表征方法也可用于表征其他感兴趣的材料。关键词介电体、倒装芯片、介电常数、谐振器、底部填充。
旋转爆震火箭发动机 (RDRE) 在航空航天和国防应用中备受关注,因为它们依赖于爆震,而不是爆燃。在爆震或增压燃烧中,火焰是超音速的,热量通过增压和释放循环释放,该循环的温度和压力都随时间变化。由于燃烧的局部化及其在一系列入口条件下的相对稳健性,热流道可以变得非常紧凑,这是经常被忽视的系统优势。这种压缩流道成为 SWAP 的优势,可以通过多种方式加以利用,例如增加燃料空间以增强系统范围。本提案涉及创新设计解决方案的设计、分析和制造演示,使爆震发动机能够使用非腐蚀耐火材料,这被认为是开发可重复使用的高热通量旋转爆震火箭发动机的一步。与目前的铜基材料相比,该技术将提供更高的最高使用温度和更好的热化学抗性。这一先进概念将在第一阶段工作计划中通过完成以下任务进行演示:定义设计要求;选择材料和开发属性数据库;设计和分析;制造简单的演示硬件;以及报告和交付。这项拟议工作的重要性在于提供更强大的 RDRE 组件,从而延长使用寿命、减少测试停机时间并提高测试条件。此外,相对于目前最先进的技术,这项工作中确定的概念将提供一种无腐蚀热壁材料解决方案,不需要任何主动冷却;从而消除了使用辅助泵、歧管和管道提供冷却液所带来的复杂性和额外的重量损失。
项目规模和种植:如前所述,项目规模的减小是拟议的房地产开发的积极更新,尤其是考虑到存在凸轮区域和内陆湿地。与拟议的雨花园一起减少了这种减少,将有助于排水并帮助减轻某些环境影响。虽然现有的海堤确实有助于沿东部物业边界侵蚀,但“海岸线下部地区的重要草”在1/28/2025的备忘录中指出,不足以满足城镇的规定并提供适当的海岸缓冲区。有效的沿海缓冲液需要除草以外的多种物种。其他根深蒂固的多年生植物,具有广泛根系系统的灌木或具有强壮的树干的树木会减轻风暴损害,从径流中清除污染物,并帮助碳储存,并为昆虫,鸟类和小型乳房提供栖息地。虽然不需要先前的种植计划的程度,但在凸轮区域中需要一个更健壮的种植计划,包括这些元素。sec中规定的法规。6-111(c)(d)(6)说景观计划:“包括一个归化的植被缓冲液,以保护环境敏感和/或生态上有价值的自然资源,例如潮汐湿地,开放水域,超过25%的斜坡,超过25%,沿海布拉夫斯和悬崖,悬崖,海滩,海滩和沙丘。种植应主要是本地物种和耐盐的物种。保护人员希望看到该物业的当前东部边界至少沿着岩壁的区域扩大并延伸,直到码头地役权边界为止。在适当的情况下,委员会可以在发现沿海资源的批量,使用或关系和/或性格的发现后放弃这一要求。”注意并欣赏到现有的围墙花园,并添加种植的七棵树以取代六棵树,但不符合上述规定。
类别0核材料,设施和设备 - 核反应堆,燃气离心机,高强度金属,设备和材料,尤其是为核用途而设计的。类别1材料,化学物质,微生物和毒素 - 保护和检测设备,防弹衣,前体化学物质,毒素,壳体,泵,泵物体,叶轮和转子,病毒,细菌,保护性和检测设备,辐射设备,辐射屏蔽窗口和金属粉末生产设备。类别2材料处理 - 用于铣削的机床,计算机数值控制的机器和组件;反应容器或反应堆,搅拌器,储罐,容器,蒸馏或吸收柱,阀门,多壁管,多封或无密封的泵,十字架,机器人,机器人,振动测试系统,真空泵,化学处理,化学处理和处理设备。类别3电子 - 微波组件,声波设备,高能设备,开关设备,雷管,某些集成电路,光谱仪电子雷管,集成电路,微波电源模块和质谱仪。类别4计算机 - 高性能计算机,相关的电子组件以及其他专门设计的组件,辐射硬化计算机,神经和光学计算机以及相关设备。类别5电信和信息安全性 - 第1部分 - 电信。电信系统,光纤电缆,无线电设备,干扰设备以及遥测设备和遥控设备。第2部分 - 信息安全性(密码学)。加密设备和通信电缆系统。类别6传感器和激光器 - 海洋声学系统,言语,高速摄像头,光学镜和激光器,成像摄像机和磁力计。类别7导航和航空电子学 - 陀螺仪,加速度计,惯性导航系统,飞行控制系统,用于海洋学和水文测量的设备,加密的全球定位系统。第8类海军陆战队 - 潜水车,水下视觉系统,摄影静止相机,远程控制的操纵器,降噪系统和空气独立的电力系统。类别9航空航天和推进 - 航空和海洋燃气轮机发动机,液体火箭推进系统,无人驾驶飞机,混合火箭电动机,导弹,重新进入车辆,无人机,火箭电机,Ramjet Engines,Spacecraft,Spacecraft,Sounding Rockets,声学振动测试设备。
乔治·贝佩特·康科迪亚大学(George Bepete Concordia University),7141 Sherbrooke St. W.,蒙特利尔,QC H4B 1R6。电子邮件:gbepete@gmail.com,george.bepete@concordia.ca,电话:+15148482424 ext。3268(办公室)学术任命,蒙特利尔大学,QC大学材料工程助理教授,2024年 - 现任物理学系2024年助理教授 - 宾夕法尼亚州立大学公园,宾夕法尼亚州大学公园,宾夕法尼亚大学公园,宾夕法尼亚大学助理研究教授2022 - 2022 - 2024年教育大学教育大学,美国韦特沃特夫妇,乔尼亚工厂,乔尼亚工厂,美国邮政编码。尼尔·科维尔论文:氮掺杂碳纳米管的化学蒸气生长,用于在有机光伏设备津巴布韦大学,哈拉雷,哈拉雷,津巴布韦MSC,可再生能源2009国立大学和科学大学,科学和科学技术,布拉维奥,布拉维奥,Zimbabwe BSC(HONS),2016年荣誉奖。过去的研究经验宾夕法尼亚州立大学物理学系,宾夕法尼亚州立学院,2017-2022,博士后研究顾问:毛里西奥·塞伦斯教授的主要责任包括对使用二维(2D)材料纳米材料合成的研究,该研究使用将分层的材料和将其组成型成型的型号和插入型成型的型号和插入型成型的物质插入中置于效率上的二维材料(2D)材料,以及超导性,超级电容器,碱金属离子电池和光电电池。将石墨烯还原为氢化石墨烯中的还原性功能,并研究了光电中应用的结构和性质之间的关系。达勒姆大学,英国化学系2016年至2017年博士后研究顾问:Karl Coleman教授的主要职责包括有关全长单壁碳纳米管(SWCNT)还原性解散的研究以及对单个SWCNT的电气和光学特性的研究。国家科学研究中心,CNRS,BORDEAUX,法国,2014 - 2026年,博士后研究顾问:Alain Penicaud教授的主要职责包括研究对单层石墨烯的无表面活性剂的无表面活性分散剂的研究,并在水中稳定在水中稳定水的碳纳米管,使用氢氧化离子稳定在水中,使用氢氧化离子静水技术,随后将其供应量化技术。Witwatersrand大学,约翰内斯堡,南非,2010年–2014博士学位顾问:Neil Coville教授化学蒸气的氮掺杂碳纳米管在有机光伏设备中应用。Rutgers大学,材料科学与工程系,新泽西州2011-2012合作者:Manish Chhowalla教授化学蒸气的氮化硼掺杂石墨烯材料用于有机光伏设备中。Rutgers大学,材料科学与工程系,新泽西州2011-2012合作者:Manish Chhowalla教授化学蒸气的氮化硼掺杂石墨烯材料用于有机光伏设备中。
2024 年 5 月 9 日,教皇方济各宣布 2025 年为希望禧年。禧年,也称为“圣年”,天主教会每二十五年庆祝一次,但也可以在教皇指定的非新年宣布为特别禧年。我们天主教庆祝禧年的基础基于旧约,源自我们的犹太教根源。根据利未记 25:8-55,禧年是免除债务、释放奴隶/囚犯、归还家族土地给原主人、国家享受上帝祝福的时期。虽然犹太人不再庆祝禧年,但在古代,他们每五十年庆祝一次。在那些日子里,禧年是在每七年一次的七个安息年之后宣布的。在安息年期间,田地休息,不能播种。禧年也是如此。因此,犹太人祈祷并相信上帝会在第四十八年为他们提供丰收,足以维持他选民两年的生活。在犹太人庆祝禧年期间,债务被免除,囚犯/奴隶被释放,所有土地都归还给原主人或他们的继承人,上帝的子民被要求重建与上帝和彼此的关系。这是感恩、休息、自由、祈祷、学习和精神成长的时刻。禧年的做法允许休息、反思和重置自由、债务、土地和信仰。自 1300 年代以来,天主教会一直以某种形式庆祝禧年。今天,这是教会生活中的一个特殊事件,通常每二十五年举行一次。上一个普通的禧年是 2000 年,当时圣约翰保罗二世宣布了大禧年。教皇弗朗西斯宣布 2016 年为特殊禧年,称为慈悲年。今年的禧年将围绕“希望永不令人失望”这一句话,并将于 12 月 24 日在罗马圣彼得大教堂举行午夜弥撒时拉开帷幕。作为禧年开幕的一部分,罗马四座大教堂的圣门将全部打开。圣彼得大教堂的圣门将于圣诞节前夕晚上 7 点打开。其他三座大教堂的圣门将分别于 12 月 29 日、1 月 1 日和 1 月 5 日开放:圣约翰拉特兰大教堂的圣门。圣门的开启象征着通过耶稣基督为人类打开了救赎之路。禧年结束时,所有圣门将关闭并由砖瓦匠用墙封闭。 2025 年希望之年将于 2026 年 1 月 6 日随着圣伯多禄大殿圣门的关闭而结束。其他三扇圣门将于 12 月 28 日关闭。