摘要:近年来,人们对自然通风解决方案的兴趣日益浓厚,将其作为实现可持续和节能建筑设计的一种手段。风捕器是一种古老的中东建筑元素,现已成为现代建筑中可行的被动冷却装置,从而提高了室内空气质量,减少了对机械通风系统的依赖。据推测,集成上翼墙 (UWW) 可以通过优化风捕获、空气循环和热调节来增强风捕器的有效性。因此,本研究旨在探索将双面风捕器与 UWW 结合起来的影响,特别强调 UWW 角度对建筑空间内通风性能的影响。为了实现这一目标,进行了一系列数值模拟,以评估风捕器和翼墙配置在不同 UWW 角度和不同风速条件下的协同作用。作为研究方法的第一步,通过比较数值结果和实验数据来验证 CFD 模型。研究结果表明这些方法之间具有良好的一致性。在下一阶段,对不同 UWW 角度(范围从 0 ◦ 到 90 ◦)的捕风器进行了严格评估。结果表明,30 ◦ 角的配置在关键通风参数(包括气流速率、换气率和空气平均年龄)方面表现出最佳性能。最后,对选定的配置在不同风速条件下进行了评估,结果证实即使在低风速条件下,捕风器也能提供符合标准要求的通风水平。
的生成,操纵和磁性域壁的传感是效率旋转器件设计的基石。半金属是为此目的而适合的,因为从自旋纹理处的自旋积累可以预期大型低场磁力信号。在一半金属中,la 1-x Sr x Mno 3(LSMO)锰矿被认为是其坚固的半金属基态的有前途的候选者,居里温度高于室温(t c = 360 K,x = 1/3)和化学稳定性。然而,由于各种磁磁性源的纠缠,即自旋积累,各向异性磁化率和巨大的磁化率,由于报道的值的差异很大,在报告的值中却差异很大,并且在报道的值中存在巨大差异。在这项工作中,在LSMO横形纳米线中测量了域壁磁磁性,其单域壁在整个路径上成核。磁阻的值超过10%,起源于由于传导电子对域壁的自旋纹理的误差效应而引起的自旋积累。从根本上讲,该结果表明了旋转纹理的非绝热过程的重要性,尽管与锰矿的局部t 2g电子相连。这些大的磁化值值足够高,足以编码和读取未来的氧化物自旋传感器中的磁位。
铁电体中的非均匀极化纹理为丰富的新材料物理学提供了沃土。非均匀极化分布的含义之一是在极化不连续处或一般在极化矢量场发散非零的点处出现束缚电荷。束缚电荷会感应出能量耗费很大的电场。因此,无论极化分布多么复杂,系统都倾向于保持其内部的电中性。那么中性意味着要么极化矢量场应该无发散,要么束缚电荷应该受到半导体性质的自由载流子的屏蔽。非均匀且几乎无发散的极化纹理主要见于多轴铁电体 [1,2],其中自发极化矢量可以旋转。
摘要:线弧添加剂制造(WAAM)以其高沉积速率而闻名,从而使大部分生产。然而,该过程在制造铝制零件时面临诸如孔隙率形成,残留应力和破裂的挑战。本研究的重点是通过使用Fronius冷金属转移系统(Wels,Austria)使用WAAM工艺制造的AA5356墙的孔隙率。将墙壁加工成以获取用于拉伸测试的标本。该研究使用计算机断层扫描和拉伸试验来分析标本的孔隙率及其与拉伸强度的潜在关系。分析的过程参数是行进速度,冷却时间和路径策略。总而言之,由于对焊接区域的热量输入较低,增加行进速度和冷却时间显着影响孔径。孔隙率可以减少热量积聚。结果表明,旅行速度的增加会导致孔隙率略有下降。特别是,当将旅行速度从700毫米/分钟提高时,总孔体积从0.42降低到0.36 mm 3。最终的拉伸强度和“来回”策略的最大伸长率略高于“ GO”策略的策略。在拉伸测试后,最终的拉伸强度和屈服强度与计算机断层扫描测量的孔隙率没有任何关系。对于所有扫描标本,测得的体积上孔总体积的百分比低于0.12%。
摘要:生物质是最重要的可再生能源之一,在减少我们对化石燃料的依赖方面发挥着重要作用。高效的生物质生产对于以最小的环境成本获得大量可持续能源至关重要。然而,生物质主要成分合成背后的生化和分子过程仍未完全了解。本综述全面总结了有关细胞壁生物合成和降解机制的最相关研究,重点关注木质纤维素成分,由于其难降解的特性,其转化为可发酵糖的过程成本高昂。重点关注涉及基因组学、转录组学、蛋白质组学、代谢组学和表型组学的多组学研究,因为多组学方法为研究表征细胞壁能源作物的基因型性状背后的生物学途径提供了独特的机会。此外,我们的研究强调了基因组编辑方法的进展,并提出修改复杂细胞壁结构中涉及的基因是实现高效生物质生产的可行解决方案。本文还讨论了基于这些新兴技术的未来研究活动的几个关键点,重点关注多组学和基因编辑方法的结合,这为提高生物质价值和开发有形生物产品提供了潜力。
铁电体中的非均匀极化纹理为丰富的新材料物理学提供了沃土。非均匀极化分布的含义之一是在极化不连续处或一般在极化矢量场发散非零的点处出现束缚电荷。束缚电荷会感应出能量耗费很大的电场。因此,无论极化分布多么复杂,系统都倾向于保持其内部的电中性。那么中性意味着要么极化矢量场应该无发散,要么束缚电荷应该受到半导体性质的自由载流子的屏蔽。非均匀且几乎无发散的极化纹理主要见于多轴铁电体 [1,2],其中自发极化矢量可以旋转。
脂蛋白的放置(LA)目前是最强大的不断措施,可在家族性高胆固醇血症和脂蛋白(a)高脂血症患者中最大程度地降低脂质。尽管LA是一种侵入性方法,但它几乎没有副作用,并且可以防止进一步的重大心血管事件。已经提出,LA所实现的严重脂质疾病的患者心血管并发症的高度显着降低不仅是由于脂质水平的有效降低而介导的,而且还通过去除其他促炎和促孕激素质地因素而介导。在这里,我们使用了一组使用刺激性系统的一组不同尺寸的尺寸的放置滤波器对LA治疗的患者进行了全面的蛋白质组学分析。这项研究表明,蛋白质组学分析与这些患者的常规临床化学息息相关。该方法非常适合发现这些患者的新生物标志物和心血管疾病的危险因素。不同的过滤器可减少和去除不同量的促孕激素蛋白。这不仅包括载脂蛋白,C反应蛋白,纤维蛋白原和纤溶酶原,而且还包括诸如补体因子B(CFAB),蛋白AMBP,AFAMIN和低亲和力免疫球蛋白γFC区域受体III-A(FCγRIIIA)等诸如补体因子B(CFAB),蛋白质ABP,AFAMIN和低亲和力。 TOR。因此,我们得出的结论是,应根据其代谢和血管风险预科生成LA的患者开发未来的试验,以开发一种个性化的治疗方法。此外,这种级联过滤器处理方案的功能可以改善心脏代谢疾病及其并发症的预防。
West Wallsend具有基本的网格街道图案,主要街道的大部分长度都在山脊之后。从许多外部有利位置,尤其是东部的山坡上可以看到该镇的建筑形式。该镇享有宏伟的环境,几乎每个部分都可以欣赏到山脉的景色。北部的方法特别值得注意,从高处降落,从农村到城市明显过渡。城镇内的商业和住宅建筑都形成了良好的街景。西沃尔森德的大街本身具有遗产兴趣。是麦格理湖的一个繁荣的早期定居点,该镇保留了这座城市的最佳例子,讲述了19世纪末和20世纪初的商业和社区建筑。
最初发生(在≈297K时发生。在较低的温度(≈255k [1])下,原始的高对称性偏置 - 正直态被恢复。与此重入相变相关的对称性在冷却时不可能增加。一些观察结果表明,这会在热容量中产生局部倾角,[1,2]在降低温度时暂停熵的降低。[1]奇怪的对称性转化也发生在通量生长的钛酸钡晶体中,在该晶体中,高度有序的“ Forsbergh模式”可以首先出现,然后随后逐渐消失,因为温度单调变化。[3,4]最近,人们认为加热会导致高元元迷宫铁电域模式,以使位于较低的对称条纹阵列:一种效果分类为“反向过渡”。[5]清楚地,对称变化偶尔会以与通常所见的相反意义发生。虽然基本的热力学定律没有破坏,但这种情况是不明显的,逮捕的,值得一提的。[6]