神经系统疾病代表与人类神经系统相关的异常。它们还包含中枢神经系统、脊髓或大脑的生化、解剖或电改变。这些疾病会引发不同的症状。及早诊断此类变化对于治疗是必要的,目的是限制疾病进展。本文介绍了一种精确的 CAD 系统来对脑 MRI 进行分类,该系统克服了模式分类中的关键问题,例如在训练阶段提取某些特征。我们的贡献是融合第二代小波 (SGW) 网络和深度学习架构,从而提出了用于模式分类的新型监督特征提取方法。我们的新型架构允许通过重建深度堆叠的第二代小波自动编码器来对数据集类别进行分类。将曲波池化 (CP) 与 Adam 梯度计算方法相结合可以提高自动编码器的准确性。在本研究中,我们利用 Haar 曲线波 (CurvPool-AH) 和 Shannon 曲线波 (CurvPool-AS) 构建了 Adam CP。该网络可以通过多个 SGW 自动编码器实现,最终在最后一层使用一个 Softmax 分类器。我们还发现 CurvPool 表现相当不错
摘要:合成孔径雷达 (SAR) 图像由于相干采集系统的乘性斑点噪声而难以解释。因此,SAR 图像的去斑点始终是 SAR 图像处理中的首要预处理任务。有许多方法使用各种空间域滤波器和变换域算法来减少斑点,但并非所有方法都能保留图像边缘特征。本文提出了一种通过稀疏表示的去斑点算法,该算法使用具有方向选择性和平移不变性的 Shearlet 变换和 DTCW 变换的组合。实验结果表明,所提出的方法比现有的最先进方法具有更好的 PSNR、ENL 和 EPI 值。所提出的方法不仅保留了边缘,还通过增强 SAR 图像的纹理改善了视觉效果。
摘要:脑电图 (EEG) 信号分析至关重要,因为它是诊断神经系统脑部疾病的有效方法。在这项工作中,我们开发了一个系统来同时诊断一到两种神经系统疾病(二类模式和三类模式)。为此,我们研究了不同的 EEG 特征提取和分类技术,以帮助准确诊断神经系统脑部疾病:癫痫和自闭症谱系障碍 (ASD)。我们针对癫痫和 ASD 分析了两种不同的 EEG 信号模式,即单通道和多通道。独立成分分析 (ICA) 技术用于从 EEG 数据集中去除伪影。然后,使用椭圆带通滤波器对 EEG 数据集进行分割和滤波,以消除噪声和干扰。接下来,使用离散小波变换 (DWT) 从滤波信号中提取脑电信号特征,将滤波信号分解为子带 delta、theta、alpha、beta 和 gamma。随后,使用五种统计方法从脑电图子带中提取特征:对数带功率 (LBP)、标准差、方差、峰度和香农熵 (SE)。此外,将这些特征输入到四个不同的分类器中,即线性判别分析 (LDA)、支持向量机 (SVM)、k 最近邻 (KNN) 和人工神经网络 (ANN),以对对应于其类别的特征进行分类。DWT 与 SE 和 LBP 的组合在所有分类器中产生最高的准确率。对于三类单通道和多通道模式,使用 SVM 的整体分类准确率分别接近 99.9% 和 ANN 的 97%。
运动成像(MI)脑电图(EEG)信号具有较低的信噪比,这在特征提取和具有高分类精度的特征选择方面带来了挑战。在这项研究中,我们提出了一种方法,该方法将改进的套索与缓解f结合起来,以提取小波数据包熵特征和大脑功能网络的拓扑特征。用于信号降解和通道过滤,根据r 2映射对原始MI EEG进行过滤,然后使用小波软阈值和一对一的多级多级得分公共空间模式算法。随后,提取了大脑网络的相对小波数据包熵和相应的拓扑特征。在特征融合后,杂种类和浮雕法被应用用于特征选择,然后分别是三个分类器和一个集合分类器。实验是在两个公共脑电图数据集(BCI竞争III数据集IIIA和BCI竞争IIA IIA)上进行的,以验证此提出的方法。结果表明,大脑网络拓扑特征和特征选择方法可以更有效地保留脑电图的信息并降低计算复杂性,并且两个公共数据集的平均分类精度均高于90%。因此,该算法适用于MI-BCI,并且在康复和其他领域具有潜在的应用。
摘要:通常使用试验期产生的所需的血液动力学响应函数(DHRF)来识别功能近红外光谱的活化通道。但是,在未知的试验期内无法使用这种方法。在本文中,提出了一种不使用DHRF的创新方法,该方法使用最大重叠离散小波变换在静止状态下提取闪烁的信号,确定与生理噪声相对应的低频小波,并使用长期术语内存网络训练它们,并预测它们在训练它们,并预测他们在任务过程中进行训练。预测的动机是在任务开始时保持生理噪声的相位信息,这是可能的,因为信号从静止状态延伸到任务会话。该技术将静息状态数据分解为九个小波,并使用第五到第九波进行学习和预测。在第八波小波中,从15-S预测窗口中使用和没有DHRF之间的预测误差差似乎是最大的。考虑到激活周期在生理噪声附近时消除生理噪声的困难,当不适用常规方法时,提出的方法可以是一种替代解决方案。在被动脑计算机界面中,估计大脑信号启动时间是必要的。
摘要简介:视觉睡眠阶段评分是一种时间表,无法提取脑电图(EEG)的非线性特征。本文提出了一种基于小波变换和重新当前神经网络(RNN)的睡眠信号的索引,用于睡眠阶段分化的新方法。方法:使用较长的短期记忆模型,根据分类吉他作品和库尔德坦堡Makams的数据库进行了两个RNN的签名和训练。此外,使用离散的小波变换和小波包分解来确定EEG信号和MUSICAL螺距之间的关联。连续的小波变换用于从脑电图中提取基于音乐节拍的功能。然后,验证的RNN用于生成音乐。为了测试构图,将11个睡眠脑映射到吉他和坦率频率间隔上,并呈现给Pre-
摘要:脑电图 (EEG) 信号很容易受到肌肉伪影的污染,这可能导致脑机接口 (BCI) 系统以及各种医疗诊断的错误解读。本文的主要目标是在不扭曲 EEG 所含信息的情况下去除肌肉伪影。首次提出了一种新的多阶段 EEG 去噪方法,其中小波包分解 (WPD) 与改进的非局部均值 (NLM) 算法相结合。首先,通过预训练的分类器识别伪影 EEG 信号。接下来,将识别出的 EEG 信号分解为小波系数,并通过改进的 NLM 滤波器进行校正。最后,通过逆 WPD 从校正后的小波系数重建无伪影的 EEG。为了优化滤波器参数,本文首次使用了两种元启发式算法。所提出的系统首先在模拟脑电图数据上进行验证,然后在真实脑电图数据上进行测试。所提出的方法在真实脑电图数据上实现了 2.9684 ± 0.7045 的平均互信息 (MI)。结果表明,所提出的系统优于最近开发的具有更高平均 MI 的去噪技术,这表明所提出的方法在重建质量方面更佳并且是全自动的。
摘要。最近一年,大脑成像技术在检查和专注于解剖学和脑功能的新视野中一直发挥着重要作用。图像处理机制被广泛用于医学中,以增强早期检测和治疗。分割和分类对于MRI脑图像处理是至关重要的作用。这项工作的目的是开发一种系统,该系统通过提出的图像分类器的过程来帮助肿瘤检测和脑MRI图像识别。在这项工作中,我们建议一个深层神经网络进行分类和细分。这项工作提出了使用深波自动编码器(DWA)的图像压缩技术,该技术结合了将自动编码器的主要功能与小波变换的图像降解属性最小化的能力。两者的组合对减小与DNN的其他分类任务的函数的大小相同。已经消除了脑系统,并考虑了提出的DNN-DWAE图像分类。与不同现有方法相比,DNN-DWAE分类器的性能评估已得到改善。
方法:本文提出了一种基于从小波 CNN(WCNN)加权层提取的深度特征和多类支持向量机(MSVM)的混合方法来提高从脑电图(EEG)信号中识别情绪状态的能力。首先,使用连续小波变换(CWT)方法对 EEG 信号进行预处理并将其转换为时频(TF)颜色表示或尺度图。然后,将尺度图输入到四个流行的预训练 CNN,AlexNet、ResNet-18、VGG-19 和 Inception-v3 中进行微调。然后,将每个 CNN 中的最佳特征层用作 MSVM 方法的输入,以对效价-唤醒模型的四个季度进行分类。最后,使用与受试者无关的留一受试者排除标准在 DEAP 和 MAHNOB-HCI 数据库上评估所提出的方法。