数据科学中的一个至关重要的问题是将高维数据中的有意义的信息提取到一个低维功能集中,这些特征可以在不同级别上表示原始数据。小波分析是将时间序列信号分解为具有详细时间分辨率的几个级别的普遍方法。但是,获得的小波在每个样本中以及一个人群中的不同样本之间相互交织并过度代表。在这里,使用模拟尖峰,实验性尖峰,钙成像信号和人类电视学信号的神经科学数据,我们在小波之间利用条件互信息进行特征选择。验证了所选特征的有意义,以高精度地解码刺激或条件,但仅使用一小部分特征。这些结果提供了一种新的小波分析方法,用于提取时空神经数据动力学的基本特征,然后可以通过代表性特征支持机器学习的新型模型设计。
1 机器人工程系,2 生物医学工程系,3 心理学系,4 印度泰米尔纳德邦哥印拜陀卡伦亚理工学院,5 加拿大卡尔加里大学。doi:10.15199/48.2024.09.27 使用提升小波变换进行基于熵的特征提取以对 EEG 信号进行分类摘要。在脑机接口 (BCI) 领域,一个关键的障碍在于有效地对运动想象 (MI) 信号进行分类。已经开发了许多基于脑电图 (EEG) 信号的 MI 分类技术。所提出的系统通过提升小波变换 (LWT) 将 EEG 信号转换为各种表示。长短期记忆 (LSTM) 用于对每行中提取的特征向量进行分类。在 PhysioNet 数据库上评估了该方法的性能,特别是用于区分右手和左手想象移动。该策略使得 LWT 的 72 个小波族中的 19 个的准确率达到 100%。这种组合被证明是基于 BCI 的脑电图分析的高效工具,展示了其作为该领域资源丰富的解决方案的潜力。压力。 W obszarze interfejsu mózg-komputer (BCI) kluczową przeszkodą jest skuteczna klasyfikacja sygnałów obrazowania motorycznego (MI). Opracowano liczne techniki klasyfikacji MI na podstawie sygnału elektroencefalogramu (EEG)。 Proponowany 系统支持脑电图 (EEG) 和提升小波变换 (LWT) 的变换。 Pamięć długoterminowa 长短期记忆 (LSTM) 是一个简单的学习方法,可以帮助您快速记忆。 Wydajność tej 方法是在 PhysioNet 和 bazie danych PhysioNet 中开玩笑的大洋洲,并在 celu rozróżnienia ruchu obrazowania prawej 和 lewej ręki 中使用。策略 ta zapewnia 100% dokładność w 19 z 72 rodzin falek LWT。该组合包括脑电图分析和 BCI 分析,可提供潜在的潜力。 ( Ekstrakcja cech oparta na entropii do klasyfikacji sygnału EEG przy użyciu transacji falkowej Lifting Wavelet ) 关键词:脑机接口、EEG、提升小波变换、LSTM。功能:计算机交互、脑电图、提升小波变换、LSTM。简介 运动想象 (MI) 代表了实现脑机接口 (BCI) 的一种方法。通常,它使用脑电图 (EEG) 来捕捉大脑活动,这是一种非侵入式且易于应用的方法。建议利用支持向量机 (SVM) 来生成非线性决策边界。此外,还定义了特定的核函数来处理数据集缺乏线性可分性的情况 [1]。研究人员在各种应用中对基于运动想象的脑机接口 EEG 信号分类进行了大量研究 [2-7]。在 BCI 的背景下,公共空间模式 (CSP) 是经常使用的特征之一。Selim 等人 [8] 提出了一种结合吸引子元基因算法和 Bat 优化算法的混合方法。这种混合方法用于选择 CSP 的最优特征并同时增强 SVM 的参数。其他研究则探索了使用 CSP 滤波器来推导新的时间序列。作者 [9] 采用了带通滤波器 (BPF) 和独立成分分析 (ICA) 等预处理技术来消除噪音。在区分左拳和右拳动作时,显式和隐式 MI 方法的准确率分别达到了 81±8% 和 83±3%。此外,各种研究还提出了结合不同方法以提高整体性能。在 [10] 中,设计了一种用于二元类 MI 分类的融合程序。它采用互相关技术提取特征,并利用最小二乘 SVM (LS-SVM) 进行分类。通过 10CV 方法进行性能评估,并将结果与八种替代方法进行比较,结果显示显著提高了 7.4%。提取特征和执行分类的另一种重要方法是使用卷积神经网络 (CNN) [11]。通过将 LSTM 网络与空间 CNN 集成,可以增强 BCI 的性能。随后,获得一个特征向量获得了一个特征向量获得了一个特征向量
在国内和国际文献中,在使用混合储能系统来减轻风能波动的策略方面取得了广泛的进步。Long [13]提出使用小波分解理论将风电场的原始输出功率分解为多个尺度,并采用模糊控制,以优化混合储能系统的初始功率分配。但是,小波分解层的选择会影响分解结果。Xianjun和Jia [14-15]提出了一种改进的小波包抑制策略,该策略不仅符合风电网连接标准,而且还降低了电荷分离开关频率,从而增强了存储系统的经济活力。Zhang [16]提出了平均滑动和EMD,以获得网格连接和储能功率信号,目的是最大化净福利以完成储能系统配置。guo [17]提出了通过考虑最新电荷(SOC)并配置额定功率和容量和容量和容量来分解混合能源系统功率。使用自适应变分模式分解(VMD)算法,Xiao [18]通过结合超级电容器和氢储罐的状态来分配内部功率,从而自适应地分解风力。fang [19]使用VMD和Wigner – Ville分布算法来处理原始功率数据,并应用了混乱粒子群优化算法来解决两阶段的每月和日前优化问题。Xidong [20]提出了一种方法,该方法将最佳的指数平滑与Ceemdan结合在一起,以获得与网格连接和存储的功率,从而促进了存储系统中的内部功率分配。
摘要:我们试图通过应用图像处理来定义肾脏内部肾脏密度的量化测量,通过应用图像处理来定义肾脏阻塞水平,可转换FFT,小波和Harr提取,并在通过伽马机通过变换和放射性计数测量的密度之间找到相关性。在这项回顾性研究中,我们考虑了140次肾闪烁显像扫描,从中度到重度诊断出110例肾脏阻塞(肾传感),发现30例正常功能肾脏。从110例病例中诊断为左肾脏肾脏病(LK-HL),M/F比为43/21,46例被诊断为M/F比为23/23的右肾脏肾脏病(RK-HR)。所选病例的平均年龄为25.65±24.58岁。三个图像增强的变换,即FFT,小波和Harr提取用于肾脏扫描,以检测肾脏内部的黑暗密度。通过Spearman的相关方法,密度测量计数和闪烁光测量的放射性计数之间的相关性。在肾脏肾脏肾脏肾脏肾脏和右侧的肾结化肾脏既有肾脏的放射性计数99m tc- dTPA之间,FFT测得的密度与动态肾脏闪烁显像USIN 99M TC-DTPA(分别分别分别为0.81和e = 0.81 and = 0.80)。还发现小波和Harr Transform的措施和闪烁显像措施之间的中等正相关。总而言之,这项研究表明,FFT方法可用于计数密度在阻塞数方面进行计数,并且可以考虑使用该密度的这些定量测量方法来定义阻塞/肾结化计数,而不是将中等水平报告为严重水平。
摘要摘要©2020 Tongji University圆盘切割器的可靠性对隧道钻孔机(TBMS)的安全性和工作效率有重大影响。为了在不同的地质和操作条件下研究圆盘切割器的可靠性,我们使用不同的倾角和室内层进行了一系列新型的滚动切割测试,对完整和接头的砂岩块进行了一系列新型的滚动切割测试。刀头头的不同正常力和旋转速度。然后提出了一种基于逻辑回归模型的新型可靠性估计方法,并分析了倾角,地层,正常力和旋转速度对圆盘切割器可靠性的影响。可靠性估计方法包括有关正常力和切割器磨损的数据采集,使用小波包装转换和相关分析提取特征,以及对逻辑回归模型的估计。为了获得每个频带的频谱和标准化的小波能量,我们通过小波数据包转换分解了正常力的时域。使用相关分析来确定对磨损损失敏感的特征频带。根据显着特征参数和磨损损失,建立了逻辑回归模型,以评估椎间盘切割器的可靠性。分析结果表明,岩石切割的最佳倾角为30°。在存在混合面和单个地面的情况下,椎间盘切割器的可靠性主要受TBM发掘和磨损损失的难度的影响。提高刀具上的正常力和旋转速度加剧磨损,从而降低了可靠性。此外,与Rabinowicz的公式相比,该建议的方法考虑了各种地质和操作条件,这使得拟议的方法更适用于估计椎间盘切割器的可靠性。
在本地紧凑的阿贝尔组及其近似特性上,Sobolev空间中的连续小波变换,国际分析与应用杂志,第1卷。21(139),doi:https://doi.org/10.28924/2291-8639-21-2023-139 24。 Awniya Kumar,Sunil Kumar Singh和Sheo Kumar Singh,关于Moritoh的笔记21(139),doi:https://doi.org/10.28924/2291-8639-21-2023-139 24。Awniya Kumar,Sunil Kumar Singh和Sheo Kumar Singh,关于Moritoh的笔记
在过去的几年中,已经描述了许多方法,以减少伪影污染,同时试图保留大多数大脑活动,即使这与伪影活动相关。自从引入眼部伪影校正的ICA以来,大量已发表的方法基于盲源分离(BSS)或独立组件分析(ICA)(Vigário,1997; Jung et al。,1998)。Other successful approaches use for example spatial filters modelling artifact and brain activity (Berg and Scherg, 1991, 1994; Ille et al., 1997, 2002), spatially constrained ICA (SCICA) (Ille, 2001; Ille et al., 2001; Hesse and James, 2006), or hybrid approaches like BSS/ICA in combination with wavelet transformation (WT) (Castellanos and Makarov,2006年; Mammone等,2012年;有关脑电图删除方法的全面审查,请参见Kaya(2022),Urigüen和Garcia-Zapirain(2015),Islam等。(2016)。
Abstract —Neuromarketing aims to understand consumer be- havior using neuroscience. Brain imaging tools such as EEG have been used to better understand consumer behavior that goes beyond self-report measures which can be a more accurate measure to understand how and why consumers prefer choosing one product over another. Previous studies have shown that consumer preferences can be effectively predicted by under- standing changes in evoked responses as captured by EEG. However, understanding ordered preference of choices was not studied earlier. In this study, we try to decipher the evoked responses using EEG while participants were presented with naturalistic stimuli i.e. movie trailers. Using Machine Learning techniques to mine the patterns in EEG signals, we predicted the movie rating with more than above-chance, 72% accuracy. Our research shows that neural correlates can be an effective predictor of consumer choices and can significantly enhance our understanding of consumer behavior. Index Terms —Neuromarketing, EEG, Machine Learning, Dis- crete Wavelet Decomposition
摘要 一种用于区分健康、发作期和发作间期脑电图信号的自动检测系统在临床实践中具有重要意义。本文介绍了一种用于癫痫和癫痫发作检测的低复杂度三类分类 VLSI 系统。设计的系统包括基于离散小波变换 (DWT) 的特征提取模块、稀疏极限学习机 (SELM) 训练模块和多类分类器模块。在三级 DWT 中引入了 Daubechies 4 阶小波的提升结构,以节省电路面积并加快计算时间。SELM 是一种新型的机器学习算法,具有低硬件复杂度和高性能,用于片上训练。由于其分类精度高,因此首次设计了一对一的多类非线性 SELM。设计的系统在 FPGA 平台上实现,并使用公开的癫痫数据集进行评估。实验结果表明,设计的系统在低维特征向量下实现了高精度。关键词:低复杂度,分类,DWT,多类,SELM 分类:集成电路(存储器,逻辑,模拟,RF,传感器)
心律不齐,一种异常心律,是心脏病的最常见类型之一。心律不齐的自动检测和分类对于减少因心脏疾病而导致的死亡可能很重要。这项工作提出了使用单通道心电图(ECG)信号的多级心律失常检测算法。在这项工作中,使用心率变异性(HRV)以及形态学特征和小波系数特征可用于检测9种心律失常。统计,熵和基于能量的特征被提取并应用于基于机器学习的随机森林分类器。两项工作中使用的数据均取自4个广泛的数据库(CPSC和CPSC Extra,PTB-XL,G12EC和Chapman-Shaoxing和ningbo数据库),可用于Phancionet。具有HRV和时域形态特征,平均准确度为85.11%,敏感性为85.11%,精度为85.07%,F1得分为85.00%,而HRV和小波系数特征则获得了90.91%的精度,90.91%fivitivity,90.91%fivitivity,90.90%的速度和90%的精确度,90.96%和90%。对仿真结果的详细分析确认,所提出的方案有效地检测了单渠道心电图记录的心律不齐类别。在工作的最后一部分中,使用Raspberry Pi在硬件上实现了建议的分类方案,以实时ECG信号分类。