摘要 — 阿片类药物过量服用是美国 50 岁以下人口死亡的主要原因之一。仅在 2021 年,阿片类药物使用者的死亡人数就上升到惊人的 80,000 多人。过量服用过程可以通过使用纳洛酮来逆转,纳洛酮是一种阿片类药物拮抗剂,可快速抵消阿片类药物引起的呼吸抑制的影响。闭环阿片类药物过量检测和纳洛酮输送的想法已成为一种潜在的工程解决方案,可减轻阿片类药物泛滥的致命影响。在本研究中,我们介绍了一种腕戴式可穿戴设备,它克服了我们前期工作中便携性问题,从而创建了一个闭环药物输送系统,其中包括 (1) 一个近红外光谱 (NIRS) 传感器,用于检测缺氧驱动的阿片类药物过量事件,(2) 一个 MOSFET 开关,和 (3) 一个零电压开关 (ZVS) 电磁加热器。通过对人类受试者 (n = 8) 进行肱动脉闭塞 (BAO),我们证明了一致的低氧合事件。此外,我们证明了我们的设备能够在检测到缺氧事件后 10 秒内释放药物。我们发现低氧合事件前后的氧合血红蛋白、脱氧血红蛋白和氧合饱和度 (SpO 2 ) 的变化不同 (p < 0.001)。尽管还需要进行更多的人体实验,但我们迄今为止的研究结果已指向一种潜在的工具,可以减轻阿片类药物泛滥的影响。
可穿戴技术和人工智能(AI)的整合已彻底改变了医疗保健,从而实现了先进的个人健康监测系统。本文探讨了可穿戴技术和AI对医疗保健的变革性影响,并强调了综合个人健康监测系统(IPHMS)的发展和理论化。通过整合来自各种可穿戴设备的数据,例如智能手机,Apple Watch和OURA环,IPHMS框架旨在通过实时警报,全面跟踪和个性化的见解来彻底改变个人健康监测。尽管具有潜力,但实际实施仍面临挑战,包括数据隐私,系统互操作性和可伸缩性。医疗保健技术从传统方法到AI增强可穿戴设备的发展强调了对个性化护理的重大进步,需要进一步的研究和创新来解决现有的局限性并充分实现此类综合健康监测系统的好处。
摘要。在本研究中使用了分析溶液和实验测试的组合,以评估多孔功能分级材料(PFGM)结构系统的耐磨性。使用基于不同参数的3D打印技术制造了圆柱多孔样品。根据ASTM标准,已经使用圆盘摩擦计上的销钉研究了多孔样品的滑动磨损行为。结果显示实验和分析分析之间的合理一致,差异为10.434%。这表明3D打印可以适用于制造可靠的粘弹性样品。但是,孔隙率参数对耐磨性有重大影响。多孔分级技术导致FGM PLA样品的较高实验性耐磨性约为31%。使用扫描电子显微镜(SEM)进行了样品骨折表面的体形观察,以检查PFGM层的性质。
这项研究在美国胸外科协会第 103 届年会上进行了口头报告。这项研究利用了凯斯西储大学高级研究计算核心设施中的高性能计算资源。该项目得到了克利夫兰临床和转化科学合作组织的支持,该组织由美国国立卫生研究院、国家转化科学促进中心、临床和转化科学奖资助,资助编号为 UL1TR002548。内容完全由作者负责,并不一定代表 NIH 的官方观点。这项研究还得到了 NIH R01 资助 - 1R01HL159170-01A1、美国胸外科协会基金会外科研究员奖以及哈佛医学院 CRICO/风险管理基金会的资助。
摘要:我们之前曾报道过可穿戴环路传感器,它能够精确监测膝关节屈曲,与现有技术相比具有独特的优势。然而,迄今为止的验证仅限于单腿配置、离散屈曲角度和体外(基于幻影)实验。在这项工作中,我们向前迈出了重要一步,探索以连续方式在体内监测膝关节屈曲角度。本文提供了双侧传感器操作的理论框架,并报告了之前未曾报道过的可穿戴环路传感器的详细误差分析。这包括校准曲线的平坦度,这限制了小角度(例如在行走过程中)的分辨率,以及在高角速度(例如在跑步过程中)下存在运动电动势 (EMF) 噪声。还介绍了一种用于制造柔性和机械坚固环路的新型方法。电磁模拟和基于幻影的实验研究优化了设置并评估了可行性。然后对进行三项活动(步行、快走和跑步)的人类受试者进行概念验证体内验证,每项活动持续 30 秒,重复三次。结果表明,在大多数情况下,均方根误差 (RMSE) 小于 3 ◦。
摘要:随着心理健康问题速度飙升,情绪识别在现代医疗保健中变得越来越重要。这项研究的重点是通过分析心电图(ECG)信号的特征来检测情绪状态,因为先前的研究表明,情绪刺激会导致个人生理信号的变化。在这项研究中,我们使用了一个数据集,该数据集包含从观察情绪刺激的受试者中获取的154个单模式ECG信号;每个标记都有不同情绪状态的价值。我们在每个信号中进行预处理,然后提取心率变异性特征,我们使用两个机器学习模型,逻辑回归和支持向量机进行了分析。总体而言,我们在支持向量机上进行了两项分类任务(快乐与高唤醒与低唤醒),每个任务的准确性约为75%。这项研究提供了进一步的证据,证明了心电图信号与情绪之间的相关性以及对可能受益于医学领域心理健康治疗的技术的洞察力。
节奏刺激,如光,声音和触觉,可以调节大脑功能并改善注意力(例如注意力)[3,12,48,63]。现有方法主要使用了不可磨损或高度专业的设备,但智能手表和智能眼镜等可穿戴设备可能会用于提供有节奏的刺激并调节大脑功能。这种方法提供了许多令人兴奋的可能性:首先,可以使用简单的软件下载来提供认知增强干预措施,从而可以使用已广泛部署和社会可接受的商业可穿戴设备,从而可以轻松分散这些干预措施。第二,因为它们几乎总是存在于用户的身体上,因此可以轻松地进行可穿戴设备,以便在用户需要时提供认知增强,并有可能自动检测到何时需要刺激。在这项研究中,我们选择专注于通过有节奏刺激可穿戴设备提高注意力。注意力可以定义为选择性分配认知资源为特定内部或外部实体的能力[43],并且它是日常生活中的关键认知功能[11]。尽管已经开发出许多方法来提高注意力,但注意力的失败仍然代表了社会的重大负担。例如,大多数交通事故涉及注意力失败[64]。可穿戴设备的安全性,在许多不同情况下都是安全,不引人注目且可用的设备,是满足某些未满足需求的潜在潜在方法。成功的设备必须有效,易于使用,在社会上可以接受和舒适。迄今为止,尚未对注意力的可穿戴节奏刺激的有效性和用户经验进行了很好的研究。因此,这项工作旨在回答以下两个研究问题。
本文提出了可穿戴的皮肤贴片,用于无线测量皮肤间质液(ISF)中蛋白质生物标志物。ISF使用微针(MN)基于真空辅助的技术从皮肤中提取,并通过真空压力自动通过斑块运输。该设备用于定量测量C-X-C型趋化因子配体9(CXCL9),这是一种自身免疫性疾病和炎症的生物标志物,可以从10 pg/ml到1,000 pg/ml的磷酸盐泡中盐水(PBS)(PBS)中,可检测到1,000 pg/ml(PBS),其检测到1.33 pg的较低限量。概念证明是通过对带有CXCL9尖刺的ISF模拟剂的尸体猪皮肤进行测量来证明的,可以在100和1,000 pg/ml下检测到,从而验证了该可穿戴传感器的功能。关键字
脉冲神经网络 (SNN) 的固有效率使其成为可穿戴健康监测的理想选择。SNN 通过事件驱动处理和稀疏激活进行操作,与传统 CNN 相比,功耗更低。这种节能方法与可穿戴设备的限制非常吻合,可确保长时间使用并最大程度地降低对用户体验的影响。另一种降低可穿戴健康监测 SNN 功耗的技术是近似计算。这种方法使资源受限的可穿戴设备能够实现计算效率,从而提高健康监测设备的使用寿命和可用性。
用纺织品式功能电极材料制成的抽象基于可穿戴纤维的锂离子电池(LIB)是实现为可穿戴电子设备供电的智能能源选项的关键。但是,在平面和固态电池中常用的现有功能材料衰减功能纤维或纱线电极的过程倾向于在组装成纺织品电极中时材料性能恶化。在这项工作中,我们专注于理解和使分层的富含Ni的阴极材料进入可穿戴的阴极纱。与CO和MN(如CO和MN)相比,富含Ni的阴极材料通常包含更高的Ni的比例,其具有LI [Ni 1-X M X] O 2(M =过渡金属元件,例如Mn,Al,Co等)典型结构。与许多商业阴极材料相比,它们提供了多个优势,包括更高的能量密度,改善的周期寿命和成本降低,在LIB的研究和开发中越来越受欢迎。我们制造的柔性Ni富含Ni的阴极纱线的总直径约为360 µm,涂层厚度约为80 µm,具有纺织特性,具有有希望的机械强度,并且具有符合任何形状的能力。当用Li金属作为反电极以半细胞排列进行测试时,富含Ni的阴极纱线电极显示稳定的环状性能,排放式均能约为3 mAh/cm 2,平均库仑效率为99.5%,在0.2 mA/cm/cm 2电流密度下。总体而言,结果表明,富含Ni的阴极材料尽管结构分层,但仍可以集成到可用的可穿戴纺织液体中。