Weyl和Dirac半学,其特征在于其独特的带状结构在费米水平(E F)附近具有线性能量色散(E VS K),已成为基于热电材料的下一代技术的有前途的候选者。它们的出色电子特性,尤其是较高的载流子迁移率和实质性的浆果曲率,它提供了潜在的潜力,可以超越常规热电材料固有的局限性。对这些材料基础的基本物理学的全面理解至关重要。本章主要集中在Weyl和Dirac半法的拓扑特性和独特的电子带结构中,提供了一个理论框架,用于理解其热电传输特性,例如Seebeck系数,电导率和导热性。浆果曲率在增强旁观系数的同时降低导热率的同时是关键重点。
我们检查了Bogoliubov-de Gennes Hamiltonian及其对称性对称性,用于分时交换对称性破碎的三维Weyl超导体。在消失的配对电位的极限中,我们指定该哈密顿量在两组持续对称性下是不变的,即u(1)量规对称性和u(1)轴向对称性。尽管Bardeen-Cooper-Schrie Q er类型的配对会自发打破这两个对称性,但我们表明,Fulde-Ferrell-Larkin-ovchinnikov型配对的fulde-ferrell-ferrell-ferrell-larkin-ovchinnikov型配对会自发地破坏u(1)的对称性(然后通过众所周知的超级量表模式恢复了超级质量验证模式)。因此,在前一种情况下,系统中需要两种NAMBU-GOLDSTONE模式来恢复损坏的对称性。我们表明这两种模式之一是出现的伪标量相模式。我们还证明了这种相位模式会导致伪 - 甲壳虫效应。
nbp是一种非中心对称拓扑WEYL半学,具有两个关键特征:Weyl点(WP),它们在其大量内通过时间逆转对称(TRS)在其大量内保护,及其在表面上的扩展,称为表面Fermi Arc [1]。这些表面费米弧与韦尔葬礼之间的动态相互作用是各种非凡现象的来源,例如极高的磁磁性,显着的迁移率,量子振荡和手性磁效应。因此,理解并在战略上操纵这些费米弧非常重要[1-3]。在我们的研究中,我们进行了角度分辨光发射光谱(ARPES)实验,以探索NBP的Fermi表面的变化,NBP(一种半学),随后蒸发了铅(PB)和Niobium(NB)。我们专注于在其(001)表面上在磷(P)和niobium(NB)终止上分裂的原始单晶。我们的观察结果表明,与未表现出这些特征的NB端端表面不同,P端的表面显示出独特的勺子和领带形的表面状态。当我们将PB的单个单层(ML)应用于P端的NBP时,我们注意到了一个重要的拓扑Lifshitz Transition(TLT)。这种过渡重新排列了一对桥接邻近的布里鲁因区,改变费米表面并引起费米能量的转移。相反,将约0.8 mL的NB添加到P端的NBP中,其电子结构接近TLT的临界点,从而导致部分转化。[1] H. F. Yang等人,Nat。社区。10,3478(2019)。10,3478(2019)。尽管在费米表面进行了这些修饰,但表面费米弧仍继续连接到拓扑保护的Weyl点。此外,NB终止的NBP,覆盖1.9 mL的Pb显示出其琐碎的表面状态的变化,这是普通的Lifshitz过渡的结果。[2] A. Bedoya-Pinto等,Adv。mater。33,2008634(2021)。[3] S. Souma等人,物理学。修订版b 93,161112(r)(2016)。该研讨会将在203室的英语现场提供,尽管可以使用变焦 - 但在IP PAS网站上提供了链接。
kagome磁铁为多种拓扑量子现象提供了一个引人入胜的平台,其中沮丧的晶体结构,磁化和旋转轨道耦合(SOC)之间的微妙相互作用可以产生高度可调的拓扑状态。在这里,利用角度分辨光发射光谱法,我们直接在A-A堆叠的Kagome磁铁GDMN 6 SN 6中直接可视化具有强大平面分散体的Weyl线。值得注意的是,Weyl线分别表现出强大的磁化方向可调节性SOC间隙和结合能可调节性,分别用TB和LI代替GD。我们的结果不仅说明了磁化方向和价算作有效的调整旋钮,以实现和控制不同的三维拓扑阶段,而且还证明了AMN 6 SN 6(a =稀土或Li,Li,Mg,CA)是用于探索多样化出现的出现拓扑量化响应的多功能材料家族。
三角形PTBI 2是一个没有反转对称性的分层半学,在费米能的附近具有12个Weyl点。最近显示其拓扑费米弧在不存在大量超导性的低温下显示出超导。在这里,我们执行第一个原理计算,以详细研究PTBI 2的整体和表面电子结构,并获得自旋纹理以及弧的动量依赖性定位。是由在压力下或掺杂下实验观察到的反转对称性的恢复的动机,我们在两个结构之间插入,并确定Weyl节点的能量和动量依赖性。为了深入了解PTBI 2的表面超导性,我们构建了对称性适应的有效四波段模型,该模型可以准确地重现PTBI 2的Weyl点。我们通过对费米弧线之间的对称允许配对进行分析,该模型自然混合了旋转单链和旋转三键通道。此外,仅表面超导的存在促进了固有的超导体 - 隔离 - 占主导地位约瑟夫森连接,而半金属相夹在两个超导体表面之间。对于π的相位差,零能量的Andreev结合状态在两个终止之间形成。
光与物质之间的相互作用允许实现量子固体中平衡状态不平衡状态。特别是,非线性语音是在非平衡中实现固定电子状态的最有效方法之一。在此,通过扩展的从头算分子动力学方法,我们确定长期持久的光驱动的准几何形状可以稳定HGTE化合物材料家族的拓扑性质。我们表明,红外活性声子模式的相干激发会导致原子几何形状的变形,其寿命为几个picseconds。我们表明,在这种非平衡几何形状中,四个Weyl点恰好位于费米水平,使其成为理想的长寿命稳定的Weyl半学。我们建议,可以通过Fermi Arc表面状态的光电子光谱或非线性霍尔效应的超快泵送传输测量值来识别这种亚稳态的拓扑相。
层状过渡金属硫族化物是电子 Weyl 节点和拓扑超导的有希望的宿主。MoTe 2 是一个引人注目的例子,它同时包含非中心对称 T d 和中心对称 T ' 相,这两种相都被认为是拓扑上非平凡的。施加的压力会将这些相分离的结构转变调整到零温度,从而稳定混合的 T d – T ' 矩阵,该矩阵包含两个非平凡拓扑相之间的界面网络。本文中,我们表明,这一临界压力范围以不同的相干量子振荡为特征,表明拓扑非平凡 T d 和 T ' 相之间的拓扑差异产生了一种新兴的电子结构:拓扑界面网络。拓扑非平凡电子结构和锁定变换势垒的罕见组合导致了这种违反直觉的情况,其中可以在结构不均匀的材料中观察到量子振荡。这些结果进一步开启了稳定多种拓扑相与超导共存的可能性。
外尔半金属 MoTe 2 为研究外尔物理与超导之间的相互作用提供了难得的机会。最近的研究发现,Se 取代可以将超导性提高到 1.5 K,但会抑制对于外尔态的出现至关重要的 T d 结构相。迄今为止,尚未建立对增强超导和 T d 相可能共存的微观理解。在这里,我们使用扫描隧道显微镜研究了最佳掺杂的超导体 MoTe 1.85 Se 0.15,其体相 T c ∼ 1.5 K。通过准粒子干涉成像,我们发现了具有破缺反演对称性的低温 T d 相的存在,其中超导性全局共存。此外,我们发现从上临界场和涡旋附近的态密度衰减中提取的超导相干长度远大于现有化学无序的特征长度尺度。我们发现 MoTe 1.85 Se 0.15 中的 Weyl 半金属正常相具有稳健的超导性,这使它成为实现拓扑超导的有希望的候选材料。
我们研究了倾斜的Weyl半准薄膜的表面等离子体极化的分散体和光谱。倾斜的Weyl半含量在Weyl节点处具有倾斜的Weyl锥,并用封闭的费米表面和I型II分类为I型,并带有过时的Weyl锥和开放的费米表面。我们发现,即使在没有外部磁场的情况下,该系统的表面等离子体极化的分散也是非偏置的。此外,我们证明了倾斜参数对控制这种非进取心具有深远的作用。我们揭示了II型Weyl半分化的薄膜以负基组速度托有表面等离子体极化模式。此外,我们表明该结构的角光谱是高度不对称的,并且在吸收性和反射率中,这种角度不对称性在很大程度上取决于倾斜的Weyl semimimetal的倾斜参数。这些令人兴奋的功能建议在光学传感设备,光学数据存储和量子信息处理的设备中使用倾斜的Weyl半学。
(这里 n = 0,1,2 …)表明存在具有 π Berry 相的狄拉克费米子 2,3,这反映了狄拉克点的拓扑性质。从那时起,许多其他类别的在其能带结构中具有狄拉克/韦尔节点特征的拓扑材料被预测和识别 4,5,在自旋电子学、光电子学和量子计算应用方面具有巨大潜力。然而,这些由两个能带或两个自旋极化能带分支交叉产生的狄拉克/韦尔点通常仅限于没有可利用带隙的半金属。在这项工作中,我们引入了一种新的半导体系统:碲烯(碲的二维 (2D) 形式),在导带最小值附近具有韦尔节点特征。二维极限下的拓扑材料和半导体的结合使我们能够以更可控的方式探索韦尔物理并设计拓扑器件。