简介我们正处于 3D 纳米成像方法飞速发展的时代。电子断层扫描可用于以原子分辨率对纳米粒子进行成像,但当样品厚度接近 1 µ m 时,多重散射效应开始降低可实现的空间分辨率。在可见光显微镜中,稀疏纳米粒子或可切换荧光团可以定位到厚度约为 1 µ m 的样品层中的几纳米范围内,而共聚焦和多光子显微镜可用于对厚度高达几百微米的样品实现大约 200 纳米的分辨率。然而,X 射线的独特之处在于它能够穿透毫米级样品,再加上相对缺乏多重散射和纳米级波长,从而实现高空间分辨率 [1]。随着同步加速器光源设施的不断改进,可用的准时间连续相干 X 射线通量几十年来一直以与电子学中的摩尔定律类似的速度增长,如图 1 所示。高相干通量通过提供足够的光子来对精细、低对比度的特征进行成像,使空间分辨率可以推至 10 纳米以下 [2]。进一步的增加将允许更快的成像、更大的视野,以及从对单个样本进行成像到从多个样本中获得具有统计意义的见解的能力。
● 5 轴精密软件控制机械手,精度 2µm(X、Y、Z 轴) ● 样品最大尺寸:直径 32 mm,厚度 7 mm ● 样品加热/冷却温度范围:-100°C 至 800°C ● 磁透镜确保高效收集光电子 ● 光谱横向分辨率 15 µm,并行成像横向分辨率 1 µm ● 检测限 0.1 至 1 原子% ● 深度分辨率:2 至 8 nm ● 使用低能电子进行电荷中和,用于分析绝缘样品
CT 扫描在临床医学中发挥着独特而必要的作用。2018 年美国进行了约 8200 万次 CT 扫描,其中 1150 万次是头部 CT 扫描。2、3 尽管数字如此之大,但 CT 的辐射暴露在很大程度上阻碍了前瞻性人体研究。此外,与 MRI 成像相比,低软组织对比度导致头部 CT 成像的临床研究发表相对较少。在临床环境中,CT 用于诊断大体结构病理,然后根据临床指征进行 MRI 成像。当 MRI 成像的信号强度基本上未校准时,CT 的图像强度是一个经过缩放和校准的指标,它反映了成像材料的放射密度并提供定量的组织测量值,而 MR 成像无法评估这一点。在这篇综述中,我们讨论了头部 CT 成像定量分析的当前方法和应用。
印度科学技术部 (DST) 纳米和先进材料司 (NAMD) 与 JNCASR 合作,帮助印度研究人员和科学家利用德国 DESY 的 PETRA III 全球同步加速器设施应对关键科学挑战。该计划旨在促进印度科学家与 DESY 之间的合作。作为该计划的一部分,研讨会将以讲座的形式介绍 DESY 同步加速器设施的基本原理及其多种应用,目的是吸引新用户有效利用这些先进的大规模研究资源。
ZEUS 多拍瓦激光设施的首次实验。亚特兰大——希腊神宙斯以控制闪电的能力而闻名,闪电是一种等离子体现象,当带负电的电子与构成空气的原子中的带正电的离子分离时,就会在大气中发生。强激光可以在实验室中引起同样的电荷分离,将原子分离成电子和离子的混合物,称为等离子体,等离子体的速度如此之快,以至于等离子体以相对论速度移动。加州大学欧文分校的研究人员在密歇根大学安娜堡分校的新 ZEUS 多拍瓦激光设施上进行首次正式实验时,探索了如何控制这些“激光诱导闪电”。了解这种相互作用中的极端物理现象本身就很有趣;然而,控制激光焦点极端条件的能力将使微型粒子加速器成为现实。如果粒子加速器体积小且价格低廉,它们可以用于医学成像、放射性同位素生产、核废料清理、先进制造等应用。粒子加速器也是至关重要的,因为它是 X 射线的强光源。目前,我们建造的粒子加速器大小相当于足球场大小,用作 X 射线机,既耗时又昂贵。加州大学研究人员利用 ZEUS 激光器证明,从激光和拇指大小的气体中可以获得类似的 X 射线。ZEUS 由美国国家科学基金会资助,正在努力成为美国最强大的激光器。在满功率下,它将能够在一次激光爆发中提供高达 3 拍瓦的功率,即超过三百万亿瓦的功率。相比之下,整个美国电网提供的功率约为太瓦,比 ZEUS 少一千倍,而 LED 灯泡仅使用约 5 瓦的功率。ZEUS 成为现实的秘诀是啁啾脉冲放大技术,该技术获得了 2018 年诺贝尔物理学奖。虽然激光非常强大,但它只能持续很短的时间,因此爆发所需的能量相对较少。在加州大学欧文分校的这项实验中(图 1),激光功率有所增加,以帮助更好地理解电子加速的物理原理与发射的 X 射线之间的关系,产生的 X 射线比牙科 X 射线亮 1000 万倍以上。
参考文献1。cr birk和al。J Power Sounce 341(2016),pp。373-386。2。f lin和al。Rev 117:21(2017),pp。13123-13。s lou和al。Accora搁置2:12(2021),pp。1177-14。和Preger和Al。J位置167:12(2020)。5。z ruff和al。J攀登168(2021)。6。Jl White和Al。J16508-16514。7。g Zan和al。J Mater Chem A 9(2021),pp。19886-18。g Qian和al。SCI REP 2:9(2021),pp。100554。9。g Qian和al。能量良好(2022)2200255。10。c chen和al。ACTA 305(2019),pp。65-71。11。g Zan和al。PNAS 119:29(2022)。PNAS 119:29(2022)。
深索特恢复的图像的全范围。Zeiss DeepScout在大型FOV量中可以在各地提供高分辨率。在低分辨率下捕获一个较大的视野,并针对一个小区域。高分辨率扫描目标。 使用DeepScout以高分辨率恢复全卷。 现在,您可以以所需的分辨率检查整个样本,以识别,量化甚至分割样本多个区域的缺陷。高分辨率扫描目标。使用DeepScout以高分辨率恢复全卷。现在,您可以以所需的分辨率检查整个样本,以识别,量化甚至分割样本多个区域的缺陷。
t619-0215 rutfmm%i *wm%k-&8-1 masami terauchi *>,masato koike *>和masahiko isfflno 2> 15高级材料多学科研究所,Tohoku University
引言NEX CG II是多元元素分散X射线荧光(EDXRF)光谱仪,可在许多行业中执行快速定性和定量的痕量元素分析和地址需求。这种下一代高端光谱仪是痕量重金属和卤素分析的理想选择,这是对多个部门的需求增加。这些功能使NEX CG II特别适合于环境监测,工业废物应用,再生材料,电子组件,药物材料,化妆品等。此外,NEX CG II通过几乎所有基质中的铀(U)提供了非破坏性分析,从油和液体到固体,金属,聚合物,粉末,粉末,糊状,涂料和薄项。与常规EDXRF光谱仪不同,nex
图。3:2d XRD数据投影到2θ -ϕ(方位角角)空间被1D方位角集成的数据叠加。使用1S集成时间获取数据。(a)和(d):静态压缩后的样品的结构和纹理,在300 K.(b)和(e)时:分别在HP加热后最高为1360 K和1360 K和1450 K时发生的结构和纹理变化。(c)和(f):动态加载后样品的结构,然后淬火至300 K;在这两种情况下,最终的铁结构都对应于ϵ相。