X射线吸收精细结构(XAFS)光谱可以获取局部结构信息,使其广泛用于科学研究[1,2],Life Sciences [3],环境研究[4-7]等。1970年代同步辐射的出现显着推动了XAFS技术的开发,从而使其能够发展为与同步加速器设施集成的独特的实验技术。[8,9]然而,同步光束的实验操作对于理解新材料的化学和局部结构至关重要,由于其耗时的性质而面临挑战。同时,用于同步辐射的原位XAFS实验的放射性样品的运输非常复杂。因此,迫切需要根据实验室场景开发X射线吸收光谱仪,以与XAFS实验条件兼容。
b'Christopher De Bono 1、Yichi Xu 2,*、Samina Kausar 1,*、\xc2\xa3、Marine Herbane 1、Camille Humbert 1、Sevda Rafatov 1、Chantal Missirian 1,3、Mathias Moreno 1、Weiyang Shi 4、Yorick Gitton 5、Alberto Lombardini 6、Ivo Vanzetta 6、S\xc3\xa9verine Mazaud-Guittot 7、Alain Ch\xc3\xa9dotal 5、Ana\xc3\xafs Baudot 1、St\xc3\xa9phane Zaffran 1 和 Heather C. Etchevers 1,'
在两种类型的石墨,天然(NG)和热解(PG)之间,显示了晶体结构弹性的差异以及介质孔隙率的影响如何影响介导过程的可逆性。[3,5]然而,某些方面(例如该系统的有限能力)仍然不清楚。从理论上讲,每个石墨烯层都可以容纳一层插入物种,到达第1阶段,但是对第3阶段的经验限制。在本文中,我们研究了通过X射线吸收结构(XAFS)光谱在Cl和Al吸收k -Edges的X射线吸收结构(XAFS)光谱中,ALCL 4阴离子在PG层中的行为。这种对两个元素选择性的双色技术从互化物种的角度从互插过程中提供了新的见解,从而阐明了到目前为止仍然值得怀疑的某些方面。文章的结构如下。第一部分显示了不同插入阶段的Al和Cl K -Edges的阴离子的电子结构。第二部分重点是量化不同跨阶段的阴离子的吸收,而第三部分则旨在突出由于应变和阴离子在阴离子上的压缩而引起的结构变化。