XUV 3XO在孟买的Mahindra India Design Studio(MIDS)概念化,并在钦奈附近的Mahindra Research Valley(MRV)进行了设计和开发。XUV 3XO代表了Mahindra全球设计和工程团队的世界一流能力。在Mahindra在Nashik的最先进的设施上建造的,它使用高级制造工艺为客户提供了一款高质量的SUV,可持久耐用。吸引多个细分市场XUV 3XO超越了新时代的SUV购买者的期望。每个变体都是为了满足其各自段的特定需求和偏好而定制的,使XUV 3XO成为真实的类别破坏者。Mahindra&Mahindra Ltd.汽车部总裁Veejay Nakra先生说:“随着Xuv 3xo的推出,以749万卢比的吸引人的价格开始,Mahindra正在重新定义SUV是什么。设计为交付“您想要的一切和更多”,XUV 3XO旨在满足各种客户的需求。从从掀背车升级到他们的第一辆SUV到以有竞争力的价格寻找高端功能的豪华寻求者,XUV 3XO提供了创新,安全性,舒适性和性能的独特融合。每个变体都是对不同客户段的细微需求的战略响应,有效地使每个变体都是其细分市场中的破坏者。”
摘要 强近红外 (NIR) 激光脉冲与宽带隙电介质相互作用会在极紫外 (XUV) 波长范围内产生高次谐波。这些观测为固体中的阿秒计量提供了可能性,精确测量各个谐波相对于 NIR 激光场的发射时间将大有裨益。本文表明,当从氧化镁晶体的输入表面检测到高次谐波时,对 XUV 发射的双色探测显示出明显的同步性,这与块体固体中电子-空穴再碰撞的半经典模型基本一致。另一方面,源自 200 μ m 厚晶体出口表面的谐波双色光谱图发生了很大变化,表明传播过程中激光场畸变的影响。我们对 XUV 能量下亚周期电子和空穴再碰撞的跟踪与阿秒脉冲固态源的开发有关。
摘要:本文对钇铁石榴石 (Y 3 Fe 5 O 12 , YIG) 和赤铁矿 ( α -Fe 2 O 3 ) 光催化分解水的性能进行了详细的光谱和动力学比较。尽管电子结构相似,但 YIG 作为水氧化催化剂的性能明显优于赤铁矿,光电流密度提高了近一个数量级,法拉第效率提高了两倍。通过超快、表面敏感的 XUV 光谱探测电荷和自旋动力学表明,性能增强的原因在于 1) 与赤铁矿相比,YIG 中的极化子形成减少;2) YIG 中催化光电流的固有自旋极化。线性 XUV 测量表明,与赤铁矿相比,YIG 中表面电子极化子的形成显著减少,这是由于 YIG 中位点相关的电子-声子耦合在光激发时导致自旋极化电流。使用 XUV 磁圆二色性直接观察 Fe M 2 、 3 和 OL 1 边缘的表面自旋积累和化学状态分辨率,提供了自旋极化电子动力学的详细图像。总之,这些结果表明 YIG 是高效自旋选择性光催化的新平台。
强激光场物理;强激光场物理中的量子光学 研究亮点 o 首次直接观测到从气体和固态介质中发射的阿秒光爆发( Nature (2003); Nature Phys. (2009); APL Photonics (2019))。 o 首次通过谐波叠加观察到原子直接双电离( PRA (2006))。 o 通过多周期激光场产生强烈的连续 XUV 辐射( Nature Phys . (2007))。 o 1-fs 电子动力学的 XUV 泵浦-XUV 探测研究( PRL (2010); Nature Phys. (2011); PRA (2014)) o 在 XUV 光谱范围内的时间门控离子显微镜( PRA (2014); Sci. Rep. (2016); J. Opt. (2018))。 o 产生具有最高光子通量的相干 XUV 脉冲(PRA(2018)、Sci. Rep.(2020))。 o 将量子光学与强激光场物理学联系起来(Sci.Rep.(2016);Nature Com.(2017);PRL(2019))。 在国际同行评审期刊上发表的论文:发表 71 篇论文,包括 1 篇 Nature、3 篇 Nature Phys .、1 篇 Nature Comm.、6 篇 Phys. Rev. Lett.、1 篇 Physics Reports、12 篇 Phys. Rev. A、3 篇 Optica、1 篇 Opt. Lett.、5 篇 Sci. Rep.、5 篇 New J. Phys.、6 篇 J. Phys. B、2 篇 Optics Express、2 篇 Appl. Phys. B、2 篇 Chem. Phys. Lett。 、2 J. Phys. Chem. A 等、书籍的 5 个章节以及 5 篇国际科学期刊的受邀评论/观点文章,引用次数约为 2500,h 因子 = 27(数据库:Google Scholar)。 会议/大学/研究所演讲:2 次主题演讲、31 次邀请和 15 次口头演讲 国际科学期刊审稿人:1) Nature Photonics 2) Nature Communications 3) Physical Review Letters 4) Scientific Reports 5) Physical Review A 6) Optics Letters 7) New Journal of Physics 8) Optics Express 9) Journal of Physics B 10) Journal of Quantum Electronics 11) Applied Physics B。 奥地利科学基金(FWF)的提案审阅人。 指导研究生和博士后研究员:4 名博士后;6 名
为了精确地测试物理理论,必须在系统中进行检查,该系统足够简单,以允许精确的理论描述,并且可以高精度地测量。数十年来,氢原子一直被用作测试量子电动力学(QED)系统的系统。由于其简单性,可以使用QED精确计算氢的能级。在实验上,使用激光光谱法精确测量氢中的过渡采石场。通过将实验数据与理论表达进行比较,可以确定两个物理概念,即rydberg常数和原子核的辐射半径,并且可以测试理论本身的有效性。在这项工作中,报告了在氢样离子He +中1s-2s两光子转变的光谱法上的进展。由于他 +具有与氢相同的结构,因此基本上是由同一理论描述的。然而,QED较高的高阶贡献了更大的比例,因为它们在核心充电中具有巨大的能力。通过将1S-2S过渡频率与氦芯的众所周知的电荷半径相结合,可以在不同的系统中首次测量Rydberg常数。该值与从氢光谱获得的值的比较将对QED的普遍性进行严格的测试。这项工作的第一部分涉及离子秋天的结构。目前,氢光谱的准确性受核运动的影响限制。由于其负载,他的 +离子几乎被困在保罗陷阱中,这大大降低了这些影响。大约50个He +离子与一千个激光冷却的Be离子一起被困在一起,可用于交感冷却。在He +离子中刺激1S-2S交叉可以导致三光子电离到2+。一种技术,可以实时和一个个体的一部分来检测这些离子。这被用作光谱法的灵敏和背景检测程序。虽然可以在深层紫外线中进行成熟激光系统的氢光谱法,但有必要刺激1S-2S过渡到He +窄带辐射,波长为60,8 nm。这是在极端紫外线(XUV)中,那里没有永久线激光器。取而代之的是,红外频率梳子的高度密集脉冲在夸张谐振器中的夸张谐振器中转换为XUV。产生的XUV频率梳子的离散时尚可以有效地下雨并实现高光谱分辨率。产生高和谐的频率梳需要特殊的光谱纯度,因此可以在XUV中实现狭窄的时尚。在这项工作的第二部分中,描述了满足此要求的稳定频率梳系统的结构。作为这项工作的一部分,已证明了一项新技术来测量谐振器稳定激光系统的噪声噪声。
使用镍的几秒极端紫外线(XUV)瞬态吸收光谱在镍M 2、3边缘进行镍中光激发载体动力学的直接测量。可以观察到,可以通过高斯拓宽(σ)和地面吸收光谱的高斯拓宽(σ)和红移(ωs)来描述光激发镍的核心水平吸收线形状。理论预测,实验结果证明,在初始快速载体热化后,电子温度升高(t)与高斯拓宽因子σ呈线性成正比,从而提供了电子温度松弛的定量实时跟踪。测量结果揭示了50 nm厚的多晶镍纤维的电子冷却时间,为640±80 fs。使用热热载体,光谱红移与电子温度变化ωs∝T 1具有幂律关系。5。通过载流子散射的快速电子热化伴随并遵循标称的4-FS光激发脉冲,直到载体达到二硫代平衡为止。与<6 FS仪器响应函数结合在一起,从在不同泵浦流动下获取的实验数据中估算了从34 fs到13 fs的载体热化时间,并且观察到电子热化时间随着泵的增加而降低。该研究提供了一个初始示例,即用XUV光实时测量金属中的电子温度和热化,并为在具有核心水平吸收光谱的金属中进一步研究光诱导的相变和载体传输的基础。
1-极端光线基础设施ERIC,Eli Beainines设施,多尔尼·布雷扎尼(Dolni Brezany),25241,捷克共和国2-劳伦斯·利弗莫尔国家实验室(Lawrence Livermore National Laboratory),美国CA 94550,美国3-美国第3--马里兰大学校园,美国马里兰州大学公园,美国4-2074年,美国4-550,美国4-20742 Collins,CO,CO,80523,美国5-劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利6-洛克希德·马丁公司7 -XUV Lasers Inc,Collins Fort Collins,CO 80527,美国
在高度激发的分子电子状态中的自动离子和预测之间的竞争是科学界1-7引起的,因为它以一种基本的方式解决了电子和核自由度之间的耦合。对此类系统的研究提供了对这些状态的势能表面的见解,以及电子相关性和非绝热效应,这些效应驱动其衰减动力学。直到最近,这些动力学已从频域测量值中推断出来,例如来自同步加速器或电子散射实验的吸收横截面中的线宽。5,8-12然而,频谱XUV区域中超快光源的出现已通过新型的光谱技术直接测量激发态寿命,
目前,基于高阶谐波发电(HHG)的台式超级紫外线(XUV,10-124 eV)和软X射线(从124 eV到几个KEV)辐射的台式超快来源显然是在对电子超时时间量表的行为方面的科学进步明显促进了科学进步。1–7这些来源成功的关键点依赖于结合极端和空间分辨率的独特能力,从而使超快动力学具有原子特异性和化学环境敏感性,直至达到了时间范围的时间域(1 as = 10-18 s)。除了在极端时间尺度上揭示动力学的惊人潜力外,HG技术仍在持续进展,旨在克服几个基本限制,从而极大地阻碍其应用。例如,HHG的显着较低的转化效率仍然代表一个主要问题,尤其是在Soft-X射线中