过去几年,YLF 经历了一段不确定时期,导致决策被动且规划短期。然而,YLF 现在可以重新评估、改进和实施一项雄心勃勃的战略,该战略将促进我们的可持续发展,并使我们能够实现慈善目标。我们的新五年战略将确保 YLF 及其年轻人继续蓬勃发展。
高能脉冲可见光激光器在各种应用中都有很高的需求,包括但不限于光学显微镜 [ 1 ]、激光显示器 [ 2 – 4 ]、医疗应用 [ 5 ] 和激光通信 [ 6 ]。此外,高功率、高光束质量的红光激光器可以作为掺杂 Cr 3 和 Ho 3 离子的透明材料的泵浦源,例如 Cr:LiSAF(Cr 3 :LiSrAlF 6 )[ 7 ] 和 Ho:ZFG(Ho 3 掺杂的氟化锆玻璃)[ 8 ]。早期研究中,产生红光常用的技术是利用非线性光学晶体如KTP(KTiOPO 4 )、LBO(LiB 3 O 5 )等,通过Nd 3 掺杂激光晶体产生1.3 μm基频激光[9,10]。该方法已被许多研究者报道,利用Q开关操作调节脉冲宽度,输出功率大多在数百毫瓦范围内。到目前为止,已报道了一些稀土离子掺杂晶体,如Pr 3 、Dy 3 和Sm 3 离子,在红色光谱区产生有效发射[11]。近年来,通过蓝色激光源泵浦Pr 3 掺杂激光材料直接产生红光技术发展迅速,具有结构紧凑、转换效率高、稳定性好等优点。 Pr3掺杂材料由于其大的发射截面和四能级激光系统可见光跃迁,已被证明是直接产生可见激光辐射最有效的解决方案之一[12]。
强场物理中许多有趣的实验都需要产生长波长激光脉冲[1-4]。最近,在 1 kHz 或更高重复率下工作的少周期、载波包络锁相、mJ 级短波红外 (SWIR,1.4-3 µ m) 激光器方面取得了进展,推动了水窗口 (282 至 533 eV) 中阿秒 X 射线源的开发[5]。利用中波红外 (MWIR,3-8 µ m) 驱动激光器已经证明了光谱截止超过 1 keV 的高次谐波产生[6]。3.5-5 µ m 大气透射窗口内的高峰值功率 (100 千兆瓦级) 脉冲能够通过克尔透镜效应在空气中自聚焦形成细丝[7,8];这种脉冲是国防应用的理想选择,因为它们可以以极高的精度和最小的衰减对目标造成最大伤害。由于在 MWIR 波长区域工作的增益介质有限,光参量啁啾脉冲放大(OPCPA)成为最佳方法。1 µ m 激光器泵浦的氧化物非线性晶体,如砷酸钛钾(KTA),能够在 3.9 µ m 波长下产生 30 mJ、80 fs、20 Hz 脉冲[9]。2 µ m 泵浦源使基本可能的上限转换效率翻倍,并且可以使用非线性度更大的非氧化物晶体,如 ZnGeP 2(ZGP),d 36 = 75 pm/V [10 – 12]。ZGP 的热导率为 36 W/(m·K),是 KTA 的 20 倍,对于高重复率/高平均功率操作至关重要。在用 1.94 µ m Tm:光纤激光器泵浦时,Ho:YLF 能够将 2 µ m 皮秒脉冲放大到几十毫焦耳[13-15]。Ho 3 +的 5 I 8 和 5 I 7 流形分别包含 13 个和 10 个能级,如图 1 所示[16]。2.05 µ m 脉冲的放大归因于模拟的上激光能级 N 2 (在 5153 cm − 1 处)和下激光能级 N 1 (在 276 cm − 1 处)之间的发射跃迁。由于基态 N 0 (在 0 cm − 1 处)和下激光能级之间的能量差很小,Ho:YLF 被认为是准三能级增益介质。如图 1 所示,相关激光能级的粒子数随温度而变化,因此 Ho:YLF 等准三能级放大器的增益在很大程度上取决于温度。高能皮秒 Ho:YLF 激光器通常基于啁啾脉冲放大 (CPA)。在产生超过 20 mJ 能量的 2 µ m 皮秒 CPA 激光器中,前置放大器的脉冲由功率放大器增强。最终输出能量由输入脉冲能量和增强器的增益决定。最近,在 2016 年 11 月 1 日展示了一种使用再生放大器和两级增强器放大输出 56 mJ 的 Ho:YLF CPA 系统。
Category Subcategory Function Economic Risk mitigation Mitigating stranded asset risk [27, 24, 26, 23, 35] Mitigating cost variability risk [24, 26, 31, 35, 34, 29] Cost reduction Deferring up-front costs [24, 26, 30, 34, 33] Optimizing system design/operation for cost [27, 28, 31, 25, 32] Obtaining favorable electricity prices [28, 29]参加奖励计划[31,32,29]收入销售收费服务[26,30,25]一代参与电力市场[31,34]吸引客户从事其他业务[26,30,25]技术专家设计适当的设备[27,28,24,24,24,24,31,32,32,33]用于性能[27,27,27,27,32,32,32,32,32,32,32,32,32,32,32,34] analyzing usage data [27, 26, 25, 32, 33, 29] Managerial System Interfacing with electricity provider [27] interfacing Obtaining permits / complying with regulations [27, 32] Simplifying billing [23] Life cycle Managing design and construction [27, 24, 26, 31] management Managing / automating operations [27, 24, 31, 35, 32, 33, 29] Managing interactions with secondary customers [26、23、25、33]访问专用的EV客户服务[24、26、32]维护 /更新设备[27、24、26、31、23、23、25、35、32、33]处理系统终止寿命[49]社会EV采用EV采用者的社会EV采用经济学改善了电动汽车的经济学[35、34、29] ACCELEFIENT [34、29] [49]改进将EVSE经济学从利用中取消[49]扩大充电资源的可用性[35]使用可再生来源的电力脱碳[28,31]促进脱碳激励计划[31,23]
• • “波普拉德”自行防空武器 • • ZSU-23-4MO“比亚瓦”防空火炮和导弹系统 • • 小型武器的热武器瞄准器 • • 生物武器检测系统 • • THz 范围内危险材料光谱特性系统 • • 防火和抑制爆炸的光电系统 • • 用于检查夜视设备的通用测试装置 • • 双色散射激光雷达 • • 用于水下物体检测的散射激光雷达 • • 荧光激光雷达 • • 高峰值功率 Er:YAG、Tm:YLF、Cr:ZnSe、Ho:YAG、Ho:YLF、Tm 光纤激光器 • • 高峰值功率、人眼安全的 Er 光纤激光发射器 • • 中红外超连续光纤激光源 • • 用于痕量气体检测的光电 CEAS 系统 • • 激光车辆测速系统 • • 基于距离选通成像系统的激光摄影系统
固体激光冷却是一项突破性技术,能够以微型方式将温度无振动冷却至 100 K。它似乎是一种很有前途的技术,可以提高未来观测卫星的性能,例如在 SWIR 和 NIR 领域。本文首次研究了在观测卫星上集成激光冷却器。我们的研究侧重于卫星有效载荷和平台级别的尺寸、重量和功率 (SWaP) 标准。其目标是评估在低地球轨道 (LEO) 红外观测任务中使用光学低温冷却器而不是机械低温冷却器的兴趣。提出了一种初步的空间激光冷却器 (LC) 架构。它由两部分组成。第一部分是冷却头,基于最先进的冷却晶体 10%Yb:YLF 和像散多通腔。第二部分是低温冷却器光电子学,基于耦合到冷却头的冗余激光二极管和光纤。考虑到红外探测器的热负荷和低温恒温器内的寄生热通量,估算了小焦平面的冷却功率。然后考虑到晶体效率、热链接损耗和光电效率,估算激光冷却器所需的光功率和电功率。假设一个为期 5 年的 LEO 微卫星任务,则对电力系统(PCDU、太阳能电池阵列、电池)和热控制系统(热管、散热器)进行尺寸计算。增加了额外的质量裕度以考虑机械支撑结构。最后,分别将有效载荷和平台的质量和体积相加,以获得卫星级别的 SWaP 平衡,代表激光冷却器的整体影响。在相同的任务和平台假设下,对微型脉冲管冷却器 (MPTC) 架构重复了该研究。最后,对这两种架构进行了比较。结果表明,即使激光冷却器的功率要求很高,质量和内部体积的减小也使得小型卫星有效载荷成为可能。
(1)577 Richardson, DJ 填充光导管。Science 2010 ,330 ,327 − 578 328。 (2)579 Desurvire, E.; 等人。21 世纪光通信中的科学和技术挑战。Comptes Rendus Physique 2011 ,12 ,581 387 − 416。 (3)582 Soref, R. 实现 2 μ m 通信。Nature Photonics 583 2015 ,9 ,358 − 359。 (4)584 Li, Z.; Heidt, A.; Daniel, J.; Jung, Y.; Alam, S.-U.; Richardson, D. 585 J. 用于 2 μ m 光通信的掺铥光纤放大器。 586 Optics Express 2013 , 21 , 9289 − 9297。(5)587 Roberts, PJ; Couny, F.; Sabert, H.; Mangan, BJ; Williams, D. 588 P.; Farr, L.; Mason, MW; Tomlinson, A.; Birks, TA; Knight, JC; 589 Russell, PS 空芯光子晶体光纤的极低损耗。590 Optics express 2005 , 13 , 236 − 244。(6)591 Zhang, H.; et al. 100 Gbit/s WDM 传输 (2 μ m):592 低损耗空芯光子带隙光纤和实心光纤的传输研究。 Optics Express 2015 , 23 , 4946 − 4951。(7)594 Li, Z.;Heidt, A.;Simakov, N.;Jung, Y.;Daniel, J.;Alam, S.;595 Richardson, D. 二极管泵浦宽带掺铥光纤放大器,用于 1800 − 2050 nm 窗口的光通信。597 Optics express 2013 , 21 , 26450 − 26455。(8)598 Frehlich, R.;Hannon, SM;Henderson, SW 2 μ m 相干多普勒激光雷达在风测量中的性能。大气与海洋技术杂志1994, 11, 1517−1528。 (9) Taczak, TM; Killinger, DK 研制出一种可调、窄线宽、连续2.066μm Ho:YLF激光器,用于遥感大气中的 CO2 和 H2O。应用光学1998, 37, 8460−8476。
模式识别算法通常用于简化亚原子物理实验中轨道重建的挑战性和必要步骤。在歧视相关相互作用的帮助下,模式识别旨在通过隔离感兴趣的信号来加速轨道重建。在高碰撞率实验中,这种算法对于确定是否保留或从给定相互作用中保留或丢弃信息至关重要,甚至在数据传输到磁带之前。随着数据速率,检测器的解决,噪声和效率低下的增加,模式识别在计算上变得更具挑战性,激发了更高效率算法和技术的发展。量子关联记忆是一种方法,旨在利用量子机械现象以获得学习能力的优势,或者可以存储和准确召回的模式数量。在这里,我们研究基于量子退火的量子关联记忆,并将其应用于粒子轨道分类。我们专注于基于量子关联记忆模型(QAMM)召回和量子内容 - 可调地理内存(QCAM)召回的歧视模型。我们使用D-Wave 2000Q处理器作为测试台将这些方法的分类性能表征为函数检测器分辨率,模式库的大小和效率低下。使用溶液状态能量和分类标签嵌入了溶液状态中的歧视标准。我们发现,基于能量的QAMM分类在较小的模式密度和低探测器效率低下的状态下表现良好。相比之下,基于州的QCAM可实现相当高的准确性回忆,以实现大模式密度和对各种检测器噪声源的最大回忆精度的鲁棒性。