过去几年,YLF 经历了一段不确定时期,导致决策被动且规划短期。然而,YLF 现在可以重新评估、改进和实施一项雄心勃勃的战略,该战略将促进我们的可持续发展,并使我们能够实现慈善目标。我们的新五年战略将确保 YLF 及其年轻人继续蓬勃发展。
高能脉冲可见光激光器在各种应用中都有很高的需求,包括但不限于光学显微镜 [ 1 ]、激光显示器 [ 2 – 4 ]、医疗应用 [ 5 ] 和激光通信 [ 6 ]。此外,高功率、高光束质量的红光激光器可以作为掺杂 Cr 3 和 Ho 3 离子的透明材料的泵浦源,例如 Cr:LiSAF(Cr 3 :LiSrAlF 6 )[ 7 ] 和 Ho:ZFG(Ho 3 掺杂的氟化锆玻璃)[ 8 ]。早期研究中,产生红光常用的技术是利用非线性光学晶体如KTP(KTiOPO 4 )、LBO(LiB 3 O 5 )等,通过Nd 3 掺杂激光晶体产生1.3 μm基频激光[9,10]。该方法已被许多研究者报道,利用Q开关操作调节脉冲宽度,输出功率大多在数百毫瓦范围内。到目前为止,已报道了一些稀土离子掺杂晶体,如Pr 3 、Dy 3 和Sm 3 离子,在红色光谱区产生有效发射[11]。近年来,通过蓝色激光源泵浦Pr 3 掺杂激光材料直接产生红光技术发展迅速,具有结构紧凑、转换效率高、稳定性好等优点。 Pr3掺杂材料由于其大的发射截面和四能级激光系统可见光跃迁,已被证明是直接产生可见激光辐射最有效的解决方案之一[12]。
规划周期描述了教育工作者在规划、记录、响应和支持儿童学习时遵循的过程。教育工作者根据他们的专业知识、对儿童和当地情况的了解以及对框架的愿景、原则、实践和学习成果的理解,做出许多有关课程规划的决定。图 2 中确定和解释的规划周期的步骤、顺序和组成部分可以自发地、在“当下”、在一天或一段时间内发生。教育工作者使用这 5 个组成部分来指导他们对儿童经历和实践改进的思考,以制定和实施包容所有儿童的课程。
强场物理中许多有趣的实验都需要产生长波长激光脉冲[1-4]。最近,在 1 kHz 或更高重复率下工作的少周期、载波包络锁相、mJ 级短波红外 (SWIR,1.4-3 µ m) 激光器方面取得了进展,推动了水窗口 (282 至 533 eV) 中阿秒 X 射线源的开发[5]。利用中波红外 (MWIR,3-8 µ m) 驱动激光器已经证明了光谱截止超过 1 keV 的高次谐波产生[6]。3.5-5 µ m 大气透射窗口内的高峰值功率 (100 千兆瓦级) 脉冲能够通过克尔透镜效应在空气中自聚焦形成细丝[7,8];这种脉冲是国防应用的理想选择,因为它们可以以极高的精度和最小的衰减对目标造成最大伤害。由于在 MWIR 波长区域工作的增益介质有限,光参量啁啾脉冲放大(OPCPA)成为最佳方法。1 µ m 激光器泵浦的氧化物非线性晶体,如砷酸钛钾(KTA),能够在 3.9 µ m 波长下产生 30 mJ、80 fs、20 Hz 脉冲[9]。2 µ m 泵浦源使基本可能的上限转换效率翻倍,并且可以使用非线性度更大的非氧化物晶体,如 ZnGeP 2(ZGP),d 36 = 75 pm/V [10 – 12]。ZGP 的热导率为 36 W/(m·K),是 KTA 的 20 倍,对于高重复率/高平均功率操作至关重要。在用 1.94 µ m Tm:光纤激光器泵浦时,Ho:YLF 能够将 2 µ m 皮秒脉冲放大到几十毫焦耳[13-15]。Ho 3 +的 5 I 8 和 5 I 7 流形分别包含 13 个和 10 个能级,如图 1 所示[16]。2.05 µ m 脉冲的放大归因于模拟的上激光能级 N 2 (在 5153 cm − 1 处)和下激光能级 N 1 (在 276 cm − 1 处)之间的发射跃迁。由于基态 N 0 (在 0 cm − 1 处)和下激光能级之间的能量差很小,Ho:YLF 被认为是准三能级增益介质。如图 1 所示,相关激光能级的粒子数随温度而变化,因此 Ho:YLF 等准三能级放大器的增益在很大程度上取决于温度。高能皮秒 Ho:YLF 激光器通常基于啁啾脉冲放大 (CPA)。在产生超过 20 mJ 能量的 2 µ m 皮秒 CPA 激光器中,前置放大器的脉冲由功率放大器增强。最终输出能量由输入脉冲能量和增强器的增益决定。最近,在 2016 年 11 月 1 日展示了一种使用再生放大器和两级增强器放大输出 56 mJ 的 Ho:YLF CPA 系统。