微注射预复合逆转录病毒SCNT转座子-基于基因组编辑的DNA进入早期DNA,通过精子递送遗传介导的基因组改变阶段受精卵进入受精卵工程细胞整合(ZFNs,TALENs,CRISPR / Cas9)
可编程的核酸酶 - ZFN,Talens和CRISPR-CAS9 - 配备了具有前所未有的能力,几乎可以随意修饰细胞和生物,在整个生命科学上都有巨大的暗示:生物学,农业,生态学和医学。基于核酸酶的基因组编辑(又称基因编辑)取决于对靶向双链断裂(DSB)的细胞反应。第一个真正可靶向的试剂是锌纤维NU-酸盐(ZFN),表明哺乳动物基因组中的任意DNA序列可以通过蛋白质工程来解决,并在基因组编辑时代介导。ZFN是锌纤维蛋白(ZFP)和FOKI裂解结构域的融合,这是由IIS型Foki型酶的基础研究产生的,该研究显示了具有可分离的DNA结合域和非特定型裂解的二重结构。对3-纤维ZFN的研究确定,预先经过的底物是配对的结合位点,这使目标识别序列的大小从9至18 bp的大小增加了一倍,足以指定植物和包括人类细胞在内的植物和哺乳动物细胞中的独特基因组基因源。随后,显示了ZFN诱导的DSB,可刺激青蛙卵中的同源性结合。基于与Foki裂解结构域融合的细菌故事的转录活化剂样核酸酶(Talens)扩大了能力。Zfn和Talens已成功地用于修改多种顽固的生物和细胞类型,这些生物和细胞类型既不是在先前证明了蛋白质工程的成功,否则很久以前就在CRISPR的到来之前很久。最近向细胞基因组传递靶向DSB的技术是RNA引导的核酸酶,如II型原核生物
摘要 自 1990 年首次使用以来,基因治疗已成为各种疾病治疗方式中不断扩展的一部分。尽管最初出现了一些挫折,导致结果不尽如人意,但科学的进步通过使用重新设计的病毒、非病毒载体、免疫原性反应的多个检查点和诱变,重新点燃了基因治疗的热情。最近,该领域正在经历一种范式转变,其中不是将治疗基因引入基因座,而是一种更无风险的解决方案,即精确地原位修复现有的遗传异常。这是通过引入 CRISPR/Cas 系统和之前的系统(例如 ZFN 和 TALEN)实现的。本文回顾了 CRISPR/Cas 在牙科中的应用,并阐明了其他系统(例如 ZFN 和 TALEN)关键词:CRISPR/Cas 系统、牙周炎、基因组编辑、锌指核酸酶。
摘要 以核酸酶为主要成分的基因编辑工具目前已能对哺乳动物基因组实现可编程的定点突变或插入或删除。从锌指核酸酶(ZFNs)、转录激活因子样效应核酸酶(TALENs)、CRISPR/Cas系统到更安全、更精准的Cas9融合蛋白基因编辑工具以及其他核酸酶基因编辑工具,本文系统地阐述了基因编辑的发展与演变,详细介绍了下一代基因编辑工具的开发与优化,并对基因编辑工具的临床应用与挑战进行了展望。 关键词 基因编辑;CRISPR/Cas9;碱基编辑;先导编辑;双链断裂;进展
基因组编辑技术,特别是基于锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN) 和 CRISPR(成簇的规律间隔的短回文重复 DNA 序列)/Cas9 的技术,正在迅速进入临床试验。迄今为止,CRISPR 的大多数临床应用都集中在体外对细胞进行基因编辑,然后将其重新引入患者体内。体外编辑方法对许多疾病状态都非常有效,包括癌症和镰状细胞病,但理想情况下,基因组编辑也应用于需要体内细胞改造的疾病。但是,CRISPR 技术的体内使用可能会因脱靶编辑、低效或脱靶递送以及刺激适得其反的免疫反应等问题而受到阻碍。当前针对这些问题的研究可能为 CRISPR 在临床领域的应用提供新的机会。在这篇综述中,我们研究了 ZFN、TALEN 和基于 CRISPR 的基因组编辑的临床试验的现状和科学基础、CRISPR 在人类中使用已知的局限性,以及快速发展的 CRISPR 工程领域,这些为进一步转化为临床应用奠定基础。
基于工程或细菌核酸酶,基因组编辑技术的发展开启了直接靶向和修改几乎所有真核细胞中的基因组序列的可能性。基因组编辑通过促进创建更准确的病理过程细胞和动物模型,扩展了我们阐明遗传学对疾病的贡献的能力,并已开始在从基础研究到应用生物技术和生物医学研究的各个领域展现出非凡的潜力。在开发可编程核酸酶方面取得的最新进展,例如锌指核酸酶 (ZFN)、转录激活因子样效应物核酸酶 (TALEN) 和成簇的规律间隔短回文重复序列 (CRISPR) - Cas 相关核酸酶,极大地加快了基因编辑从概念到临床实践的进程。本文回顾了三种主要基因组编辑技术(ZFN、TALEN 和 CRISPR/Cas9)的最新进展,并讨论了其衍生试剂作为基因编辑工具在各种人类疾病和未来潜在疗法中的应用,重点关注真核细胞和动物模型。最后,我们概述了应用基因组编辑平台治疗疾病的临床试验以及实施该技术的一些挑战。
(crRNA)或单个诱导RNA(SGRNA)将CAS ector蛋白引导至用于加工的特定核酸序列,例如,结合和/或裂解。在CRISPR - CAS技术之前,其他核酸结合蛋白,例如锌nger核酸酶(ZFN),6个转录激活剂核酸蛋白酶(tal-ens),7和8个转录激活蛋白,8个,8个,8次,工程为与特定c c and c cy c c c c c c c demomic cynomic cytemic cytemic contimic contimic cypeci c necy。9,10麦尿素,例如laglidadg归核核酸内切酶,特定识别14至40个碱基对的双链DNA序列,并启用DNA序列的修改和缺失。8个ZFN要求将多个锌nger基序连接起来,每个基序都针对一个核苷酸三重态。10 Talens需要一个DNA结合结构域,其中每个氨基酸与四种类型的核苷酸之一的特异性结合。10这些系统需要针对不同目标位点的工程不同的融合蛋白,因此并不广泛适用。CRISPR - CAS技术克服了这个问题。可以通过使用设计用于识别基因序列的cRRNA来实现不同的基因序列。CRRNA介导的CRISPR指导的可编程特征尤其有利。因此,CRISPR - CAS
摘要:由真菌杂草虫L.引起的大米爆炸被认为是对世界大米生产的主要威胁之一。抗性品种的发展是最好的,可持续的控制替代品之一。植物育种工作已通过遗传图(连锁和关联)和标记辅助选择加速。On the other hand, genomic editing techniques, such as meganucleases (MNs), Zinc-finger nucleases (ZFNs), Transcription Activa tor–like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindrome Repeats/ CRISPR-associated protein 9 (CRISPR/Cas9), can be used to promote specific genetic modifications.同样,转基因也可以用于操纵特定基因。从这个意义上讲,这项工作旨在表征大米爆炸并阐明可用的生物技术替代方法,以加速改善水稻品种对水稻爆炸具有耐药性的发展。关键词:非生物压力,生物技术工具,Oryza sativa L.,pyricularia oryzae L.
生成 KO 动物使观察整个生物体基因被破坏时的情况成为可能,并能解答各种疾病的起源和发展过程。虽然经过漫长的历程才开发出现在易于生成的模型,但如今这些动物模型的生成效率已经足够高。生成 KO 小鼠的最初两种方法是基因捕获(Gossler 等人,1989 年)和基因打靶(Mansour 等人,1988 年)。这两种方法都需要胚胎干细胞 (ESC),产生的是嵌合小鼠,既不经济也不省时。转座子系统也是破坏小鼠基因的实用工具(Dupuy 等人,2001 年),然而,基于转座子的方法后来被证明在创建转基因动物方面非常有效(Garrels 等人,2011 年,Katter 等人,2013 年)。位点特异性核酸内切酶、TALEN、ZFN 和 CRISPR/Cas9 是基因编辑工具箱的最新成员。TALEN 和 ZFN 需要工程蛋白,而 CRISPR/Cas9 是 RNA 引导的。CRISPR/Cas9 基因编辑需要 Cas9 mRNA 或蛋白和单向导 RNA (sgRNA),后者由反式激活 RNA 和 CRISPR RNA 组成。上述所有核酸内切酶都会在基因组中诱导位点特异性双链断裂 (DSB),这通常是
已经有10年的时间,距离定期间隔的短质体重复相关蛋白9(CRISPR/CAS9)时代的首次群体首次亮相,其中基因工程从未如此易于访问,精确且有效。这项技术,例如一种精致的外科手术,具有去除不同类型的疾病并恢复关键蛋白质活性的能力,易于表现先前的类似类似:锌指核酸酶(ZFNS)和转录激活剂效应效应核酸酶(TALENS)。此外,CRISPR-CAS9系统可以系统地将遗传序列引入人类基因组中的特定部位,从而刺激诸如抗肿瘤和抗抗病学系等所需功能。本简要审查提供了CRISPR-CAS9的最新成就的最新简历,从首次出现到目前的日期,重点是突破性研究,包括体外,体内和人类研究。这可以评估上一个阶段的“概念证明阶段”,并标志着下一阶段的开始,这可能会带来一系列临床试验。关键字:CRISPR/CAS9;脱氧核糖核酸;基因编辑;基因疗法