Trafigura Group Pte的公司。Ltd.直接或间接拥有投资是每个独立的法律实体,不应另行考虑或解释。本文档是指:(i)某些子公司Trafigura Group pte。Ltd.具有直接或间接控制; (ii)Trafigura集团PTE的某些合资实体和安排。Ltd.具有直接或间接的关节控制; (iii)Trafigura集团PTE的某些其他投资。Ltd.既没有控制也没有关节控制,也可能没有影响。为了避免疑问,引用了“ Trafigura”,“ Trafigura Group,“公司”,“团体”,“我们”,“我们”,“我们”,“我们的”和“我们的”和“我们的”和“我们的”Ltd.,其子公司和/或其合资企业。
EXZACT™ 精准技术消除了植物基因组改造中的猜测。EXZACT™ 基于专有的锌指蛋白 (ZFP) 设计,是一种多功能且强大的工具包,可用于对植物进行靶向基因组改造。EXZACT™ 能够针对几乎任何 DNA 序列,从而使发现者和开发者能够快速准确地添加、删除或编辑基因。使用 EXZACT™,植物研究人员可以测试假设、开发遗传特性并将其引入植物,同时避免传统 DNA 工程工具带来的意外影响。EXZACT™ 加快了特性开发时间并降低了农产品成本,并为作物特性研发建立了新的行业标准。了解更多信息,请访问 www.exzactprecisiontechnology.com。
3。RESULTS......................................................................................52 3.1.ZnO nanoparticles and their nanohybrids ..............................52 3.1.1.晶体结构......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 52 3.1.2。Nanostructures and morphology.......................................56 3.1.3.Chemical bonding............................................................64 3.1.4.X射线光电子光谱.............................................................................................................. 67 3.1.5。拉曼光谱法..................................................................................................................... 72 3.1.6。频段间隙........................................................................................................................................................... 75 3.1.7。光致发光发射光谱............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 77 3.2。ZnO nanorods ........................................................................83 3.2.1.结晶结构........................................................................................................................................................................................................................................................................................... 83 3.2.2。Morphology......................................................................84 3.2.3.光学特性......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 86 3.2.4。Electrical properties studied by I-V and I-t measuremesnts............................................................................88 3.3.Photodiodes............................................................................93 3.3.1.形态..................................................................................................................................................................................................................................................................................................................................................................... 93 3.3.2。I-V characteristics in dark.................................................94 3.3.3.理想因素计算........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 95 3.3.4。I-V辐射下的I-V特征................................................................................................................................................................................................................................................................................. 95 3.3.5。I-t characteristics: UV on/off cycles...................................97 3.3.6.Figures of merit................................................................98
在2019年,在CDR下报告的锌高磷酸锌的全部制造约为0.66 m kg(EPA,2020年);但是,一些国内制造商声称拥有机密的业务信息,并且没有向EPA报告生产量,其中包括历史悠久的重要国内制造商ICL特色产品和撒切尔公司。大多数锌邻磷酸锌生产设施生产用于金属涂料的锌邻磷酸锌混合物。Carus Corporation是2019年水处理报告生产的最大的高磷酸锌混合物。图2中所示的国内制造地点数量代表了2015年的运营设施(EPA,2016年)。NSF/ANSI标准60认证的量磷酸锌供应用于饮用水处理的锌在美国广泛分布(NSF International,2021年)。有关制造地点和供应商地点的最新清单,请访问美国环境保护局(EPA)的化学定位器工具(EPA,2022a)。
https://doi.org/10.26434/chemrxiv-2024-b7pr1 orcid:https://orcid.org/0000-0000-0002-3346-937x contern content content content content contem 许可证:CC BY-NC-ND 4.0https://doi.org/10.26434/chemrxiv-2024-b7pr1 orcid:https://orcid.org/0000-0000-0002-3346-937x contern content content content content contem许可证:CC BY-NC-ND 4.0
摘要:水系锌电池(AZB)是一种很有前途的储能技术,因为它们具有高理论容量、低氧化还原电位和安全性。然而,金属锌表面的枝晶生长和寄生反应会导致严重的不稳定性。本文我们报道了一种获得超细锌纳米颗粒阳极的新方法,该方法通过使用乙二醇单甲醚(EGME)分子来操纵锌的成核和生长过程。结果表明,EGME 与 Zn 2+ 复合以适度增加成核的驱动力,并吸附在锌表面以通过细化晶粒来防止 H- 腐蚀和树枝状突起。因此,纳米级阳极具有高库仑效率(约 99.5%)、长循环寿命(超过 366 天和 8800 次循环)以及与全电池中最先进的正极(ZnVO 和 AC)出色的兼容性。这项研究为水性金属离子电池的界面工程提供了一种新途径,对 AZB 的商业化未来具有重要意义。关键词:水性锌电池、锌金属阳极、超细纳米颗粒、枝晶生长、寄生反应
对未来的网格级存储应用有吸引力。金属Zn作为AZB的理想阳极,具有最高的理论能力(5851 mAh ml -1)。它也是无毒的,不可易变的,丰富的,并且具有良好的电导率和水稳定性。[1-5]然而,循环过程中的召开金属锌阳极遭受严重的树突形成,造成了严重的问题,例如较差的可逆性,电压滞后,寄生反应增加,缩短了电池损坏造成的电池故障以及其他问题。[1,3,6]这些树突状结构,稀有的针或非平面血小板沉积物,在电极的不规则或有缺陷区域偏爱形成,在该区域中,局部电流密度最高,初始核核事件最有可能[7],并且在高电流和coscAcs cocclities和coscling cancling cancling and coscling and cancliesitions [7]。[8,9]控制和抑制树突状增长的策略围绕着操纵电力,通常是通过包含添加剂[10-15],或通过将电极设计到高面积的海绵中[16-18],[16-18]或保护表面涂料,[19]以供应,[19]以抑制构建dendrite。