本论文介绍了基于交流塞曼势能的芯片捕获原子干涉仪的开发进展。原子干涉仪是一种高精度测量工具,可以检测各种类型的力和势能。本论文介绍的捕获原子干涉仪针对的是传统弹道原子干涉仪的缺点,传统弹道原子干涉仪通常高度为米级。值得注意的是,捕获原子干涉仪具有局部原子样本、可能更长的干涉相位积累时间,并有望成为更紧凑仪器的基础。本论文介绍了基于交流塞曼势能和陷阱的捕获原子干涉仪的多个开发项目:1)在芯片上生产超冷钾,2)芯片陷阱中的势能粗糙度理论,3)微波芯片陷阱设计,4)基于激光偶极子陷阱和交流塞曼力的铷原子捕获原子干涉仪。 (1) 钾具有玻色子和费米子同位素、多个“魔”磁场,而且易于射频和微波捕获,是原子干涉仪的良好候选材料。对激光冷却和捕获系统进行了升级,以提高芯片陷阱中钾原子的温度和数量。芯片冷却导致了显著的非弹性损失,从而阻止了钾玻色-爱因斯坦凝聚体的产生。(2)芯片导线缺陷的数值模拟预测交流塞曼捕获势应该比直流塞曼捕获势平滑得多:粗糙度的抑制是由于磁极化选择规则和交流趋肤效应。(3)此外,本论文对构成交流塞曼陷阱微波原子芯片构建块的直和弯微带传输线进行了一系列研究。 (4)最后,我们构建了一个基于铷原子的拉姆齐干涉仪,通过施加自旋相关的交流塞曼力,该干涉仪可以转换为原子干涉仪:利用干涉仪测量直流和交流塞曼能量偏移,并在交流塞曼力的作用下观察条纹。
我们从理论上证明了通过施加平面塞曼场可以在二维 Z 2 拓扑绝缘体中实现具有稳健角态的二阶拓扑绝缘体。塞曼场破坏了时间反演对称性,从而破坏了 Z 2 拓扑相。然而,它尊重一些晶体对称性,因此可以保护高阶拓扑相。以 Kane-Mele 模型为具体例子,我们发现沿锯齿边界的自旋螺旋边缘态被塞曼场隔开,而在两个锯齿边缘的交叉点处出现了带隙内角态,该角态与场的方向无关。我们进一步表明,角态对平面外塞曼场、交错亚晶格势、Rashba 自旋轨道耦合和蜂窝晶格的屈曲具有稳健性,使它们在实验上可行。在著名的 Bernevig-Hughes-Zhang 模型中也可以发现类似的行为。
在石墨烯中,与量子大厅(QH)方向上的自旋和山谷自由度相关的近似SU(4)对称性在石墨烯Landau水平(LLS)的四重脱胶中反映了。相互作用和Zeeman效应打破了这种近似对称性并提高LLS的相应堕落性。我们研究了近似SU(4)对称的破裂如何影响位于超导体附近的石墨烯QH边缘模式的性质。我们展示了四倍变性的提升是如何定性地修改QH-螺旋导体异质结的运输特性。对于零LL,通过将边缘模式放置在靠近超导体的位置,从原则上讲,在存在较小的Zeeman Field的情况下,可以实现支撑Majoranas的一维拓扑超导体。我们估计了这种拓扑超导体的拓扑间隙,并将其与QH-Superconductor界面的性质相关联。
Majorana零模式(MZM)的成功实现 - 不代表大约的凝结物类似物[2,3],为拓扑量子构成[4-7]的有前途的平台[4-7],依赖于拓扑阶段的强大超级超级超级阶段[4-7],这些阶段是他们[8-8]的固有阶段[8]。在没有天然发生的一维拓扑超导体的情况下,该研究集中在杂化结构[15-17]上,尤其是半导体(SM)电线,在存在磁性纤维相似的情况下,与S-波超导体(SCS)接近耦合,并耦合。即使在存在一些弱 /中度系统不均匀性的情况下,即使在存在某些弱 /中度系统的情况下,也可以确保出现拓扑超导阶段的出现。然而,除了抑制母体超导体的间隙外,轨道效应起着重要作用[25],并且严重限制了可靠的拓扑超导性的实现,应用的磁性磁场对基于Majorana基于Majorana topolication Quological Qubits的可能的设备布局构成了严重的限制[26]。可能的解决方案是通过将半导体耦合到磁性内硫酸[16,27]来创建所需的Zeeman场。最近,使用INAS纳米线进行了实验性探索,具有超导Al和铁磁EUS的外延层[28-30]。关键的发现是1 t命令的有效Zeeman Field SC EFF(〜0。这些特征在没有重叠的Al和EUS覆盖的小面的杂化结构中不存在[28]。05 MeV)在没有施加的磁场的情况下出现在超导体中,但仅在具有超导体和铁磁绝缘子的壳壳中壳壳[28]。与超导体中有效的Zeeman场的出现相关的是,观察到零偏置电导峰,用于电荷隧穿到半导体线的末端,这与拓扑超导的存在一致。
1 规则. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Chris Jones 和 Mary-Lou Zeeman . . . . . . . . . . . . . . . . . . . . . . . 2 3 Inez Fung:气候变化的科学 . . . . . . . . . . . . . . . . . . . . . . 2 3.1 大气 . . . . . . . . . . . . . . . . . . . . ... 5 6 雪球地球:我们的敏感星球 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10 动态系统概念简介 . ... . ... . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ...
众所周知,在三个维薄的杂种结构中,超导体/铁磁铁(S/F)在超导体中诱导的有效Zeeman场抑制了超导性。由于靠近铁磁剂的影响而产生了这个有效的领域。van-der-valsov s/f异质结构是实现与接近效应相关的现象的有前途平台,因为在这种情况下,本节的部分适用于整个材料。由于异质结构中的单层层少量,在这种情况下接近的影响取决于电子光谱对相截面边界的杂交的影响,并且可能与众所周知的三维情况有很大不同。杂交程度,因此,可以通过对快门的压力来控制超导性,这具有极大的科学利益。在超导体中诱导的有效Zeeman场的振幅和迹象也可以通过快门电压完全控制[1]。因此,Van-der-Valsovs S/F-Help和S/F/S-Dagram非常有趣地用于超导Spintronics和Spin Caloritronics。例如,我们证明在这样的鹅蚀术中,可以实现由快门控制的自旋阀效应。
§ 金刚石、碳化硅(SiC)和六方氮化硼(hBN)拥有各种光学可及的自旋活性量子中心 § 在环境条件下具有优异的相干特性(“室温下的量子比特”) § 由于塞曼分裂,缺陷的能级结构对磁场高度敏感
实现空间NWP能力的主要障碍是缺乏近实时的中间大气状态测量来同化。在中层中唯一可用的气象观测来源是国防气象卫星计划(DMSP)特殊传感器微波成像仪/声音器(SSMIS)仪器的上部空气响料(UAS)通道提供的。 迄今为止,此数据已经未被充分利用,因为:1)典型的全局NWP模型不会跨越所需的垂直范围(表面至100 km),因此不包括中层; 2)在数据同化系统中使用的快速辐射转移(RT)模型缺乏对Zeeman效应对氧气分子与高于40 km高度的微波磁场范围内的氧气相互作用的明确处理。 社区辐射转移模型(CRTM)的版本2已实施了UAS通道所需的Zeeman分拆光谱计算。 在此海报中,我们评估了通过使用一致的剑术温度概况将辐射与CRTM计算进行比较,评估了UAS(UPP-UAS)通道新开发的SSMIS统一统一前处理器的实用性。 我们还展示了使用海军全球环境模型(NAVGEM)的示例UAS同化分析。在中层中唯一可用的气象观测来源是国防气象卫星计划(DMSP)特殊传感器微波成像仪/声音器(SSMIS)仪器的上部空气响料(UAS)通道提供的。迄今为止,此数据已经未被充分利用,因为:1)典型的全局NWP模型不会跨越所需的垂直范围(表面至100 km),因此不包括中层; 2)在数据同化系统中使用的快速辐射转移(RT)模型缺乏对Zeeman效应对氧气分子与高于40 km高度的微波磁场范围内的氧气相互作用的明确处理。社区辐射转移模型(CRTM)的版本2已实施了UAS通道所需的Zeeman分拆光谱计算。在此海报中,我们评估了通过使用一致的剑术温度概况将辐射与CRTM计算进行比较,评估了UAS(UPP-UAS)通道新开发的SSMIS统一统一前处理器的实用性。我们还展示了使用海军全球环境模型(NAVGEM)的示例UAS同化分析。
在有限长度的超导型杂种系统中,Majorana结合状态的出现已预测以振荡能水平的形式发生,而奇偶校验横梁围绕零能量。每次零能量交叉都有望产生量化的零偏置电导峰值,但有几项研究报告了电导率峰值固定在零能量的一系列Zeeman领域,但其起源并不清楚。在这项工作中,我们考虑在Zeeman场下与旋转轨道耦合的超导系统,并证明,由于与Ferromagnet Lead的耦合,非富裕效应引起了Majorana和Trivial Andreev结合状态的零能量。我们发现,这种零能量固定效应是由于形成了被称为异常点的非弱势光谱退化性的,其出现可以通过非热性的相互作用,应用的Zeeman Fierd和化学势来控制。此外,根据非热空间空间验证,我们发现非热性会改变单点赫尔米尔拓扑相变为受到多个低能水平的特殊点的特殊点界定的零能量线。这种看似无辜的变化显着使差距截断远低于Hermitian拓扑相过渡,这原则上可以简单地实现。此外,我们揭示了将主要和琐碎的Andreev结合状态与准核定状态分开的能量差距对于产生零能量固定效应的值仍然是强大的。因此,我们的发现对于理解Majorana设备中微不足道和拓扑状态的零能量固定可能很有用。尽管合理的非热性价值确实可以是有益的,但非常强大的非热效应可能会破坏超导性。