我们考虑在填充因子8 /17处的分数量子霍尔效应(FQHE),其中在双层石墨烯的Zeroth Landau水平上观察到了不可压缩性的特征。我们提出了一个用“(8/3)21 3” Parton波函数描述的Abelian状态,其中Parton本身形成了FQHE状态。该状态在拓扑上与摩尔阅读状态的女儿状态的8/17 Levin-Halperin State不同。我们在双层石墨烯的Zeroth Landau水平的8/17处进行了库仑相互作用的广泛数值精确对角线化,但发现我们的结果无法最终确定基本基态的拓扑顺序。我们将(8 /3)21 3边缘的低能效率理论进行了预测,并对该状态的实验可测量特性进行了预测,该特性可以证明它除了8/17 levin-halperin状态。
1简介11 1.1一些语义。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 1.2历史里程碑。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 1.3科学哲学注释。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 1.4一些实际应用。。。。。。。。。。。。。。。。。。。。。。。。。。。17 1.5示例说明家庭作业解决方案样式。。。。。。。。。。。。。。。。。24 1.6热力学系统和控制量。。。。。。。。。。。。。。。。。。29 1.7宏观与微观。。。。。。。。。。。。。。。。。。。。。。。。。30 1.8物质的特性和状态。。。。。。。。。。。。。。。。。。。。。。。33 1.9过程和周期。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34 1.10基本变量和单位。。。。。。。。。。。。。。。。。。。。。。。。。35 1.11热力学的零定律。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 36 1.12次要变量和单元。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 3735 1.11热力学的零定律。。。。。。。。。。。。。。。。。。。。。。。。。。36 1.12次要变量和单元。。。。。。。。。。。。。。。。。。。。。。。。。。37
教学大纲 单元 – I:热力学 18 小时 热力学变量 1 - 广度和深度变量 - 热力学第零定律 2 - 热功等价 - 热力学第一定律 3,4 - 热力学第一定律的意义 - 热力学过程 - 可逆过程 - 不可逆过程 - 状态变量和过程变量 - 熵的定义 5 - 热力学第二定律 6,7 - 不可逆过程中的熵变化 - 麦克斯韦热力学关系 - 热力学势 - 焓 8、亥姆霍兹和吉布斯函数 - 相变 - 克劳修斯 - 克拉佩龙方程 - 范德华状态方程。
1 简介 {sec:intro} 经典双重复制的最直接表述 [ 1 ] 是将杨-米尔斯理论阿贝尔部分的经典解和双伴生标量理论的经典解映射到广义相对论的经典解。引力解表示为规范理论解的两个副本,因此得名“双重复制”。相反,规范解通常被称为引力解的“单一副本”,而标量解被称为“第零个副本”。这种双重复制程序的基础在于规范和引力振幅之间的颜色运动学对偶性(有关最新评论,请参阅 [ 2 – 4 ])。自从最初为 Kerr-Schild 时空提出双重复制公式 [ 1 ] 以来,经典双重复制关系的其他几个例子
图1:Linbo 3元图操作原理和几何形状。a)在元时间播放中播放的差异机制的草图。在角度频率ω处的泵撞击了linbo 3纳米圆柱上的泵,该泵从基板侧碰撞。在角频率2Ω下生成的Sh从零差顺序中删除,并归因于第一个差异顺序,这要归功于单个纳米柱的发射模式之间的干扰。b)直径为15 µm的已实现的跨膜的电子显微镜图像。 c)纳米圆柱的变焦,显示了在过程结束时获得的约80°侧壁倾斜度和顶部。每个纳米氏菌的基本半径为175 nm,高度为420 nm,阵列p为590 nm。元表面位于XY笛卡尔平面,沿Z的Linbo 3的非凡轴。
量子大厅(QH)效应,量子自旋大厅(QSH)效应和量子谷霍尔(QVH)效应是石墨烯中三个特殊的拓扑绝缘阶段。它们的特征是三种不同类型的边缘状态。这三个效应分别由外部磁场,固有的自旋轨道耦合(SOC)和应变诱导的假磁场引起。在这里,我们从理论上研究了这些效果并存并分析边缘状态如何在三个之间发展时。我们发现真实的磁场,伪磁场将在SOC能量差距上方竞争,而QSH效应几乎不受SOC能量差距的影响。边缘状态从QH效应或QVH效应到QSH效应的过渡直接依赖于Zeroth Landau级别的排列。使用边缘状态过渡,我们提出了类似于自旋场效应晶体管(Spin-Fet)的设备,并设计了Spintronics多向开关。
集体自旋波激发,镁元素是下一代Spintronics设备的有前途的准颗粒,包括用于信息传输的平台。在量子大厅铁磁体中,检测这些电荷 - 中性激发依赖于以多余的电子和孔的形式转化为电信号,但是如果多余的电气和孔相等,则检测到电信号是挑战性的。在这项工作中,我们通过测量镁产生的电噪声来克服这一缺点。我们使用石墨烯的Zeroth Landau级别的对称性破裂的量子厅Ferromagnet来启动镁质。这些镁的吸收在Zeeman能量上方产生过多的噪声,即使平均电信号为零,也仍然有限。 此外,我们制定了一个理论模型,其中噪声是通过边缘通道之间的平衡和传播镁来产生的。 我们的模型还允许我们查明设备中弹道木棒运输的状态。在Zeeman能量上方产生过多的噪声,即使平均电信号为零,也仍然有限。此外,我们制定了一个理论模型,其中噪声是通过边缘通道之间的平衡和传播镁来产生的。我们的模型还允许我们查明设备中弹道木棒运输的状态。
热力学与相变:热力学中的热和功的概念、热力学系统、热力学第零定律。温度概念、第一定律的微分形式、第二定律的陈述、熵的概念、焓。晶体的热力学函数和关系。相变和多相平衡。[10] 电子能带理论:能带理论、固体的经典自由电子理论、固体的索末菲量子自由电子理论、周期势的布洛赫波函数、克罗尼希-佩尼模型和能带。费米能量和费米面、电子的有效质量、布里渊区和倒易晶格。[10] 固体的电子特性:磁场下的传输方程、回旋共振、磁场下的能级和态密度。朗道抗磁性、自旋顺磁性、德哈斯范阿尔芬效应。磁阻、经典和量子霍尔效应。 [10] 教科书和/或参考资料
摘要。湍流流的直接数值模拟(DNS)需要一个较大的计算域和较长的模拟时间来捕获和发展大规模结构并达到统计固定状态。相比之下,实验测量可以相对容易捕获大规模结构,但努力解决耗散流量尺度。这项研究调查了湍流通道流量的DNS所需的空间范围,以恢复使用实验入口数据时恢复湍流和能量的空间范围,而实验入口数据通常无法捕获向粘性子层捕获的爆发。REτ= 180处的流循环通道流dns的合成实验场被用作具有入口输出边界条件的通道流量DNS的入口。通过除了零傅里叶模式以外的所有壁壁能量和爆发,可以检查入口处有限的近壁数据的效果。有限的近壁数据对平均值和流动性速度速度的收敛性的影响不太明显,当时在y + = 5。然而,跨度的流动略有弱。跨度能光谱表明,在域长度的1/16处(x/h≈π/4)恢复流量尺度。当将闪光移除至y + = 17或更大时,全范围的流量尺度需要一个大于x/h =4π的域。
本文认为,当代对人工智能的关注经常引入哲学问题:人类对判断是什么?要了解这个流行的虚构的前提,我们将注意力转移到了艾萨克·阿西莫夫(Isaac Asimov)的机器人法则上,这是他的科幻故事中部署的一系列法律,以创建有关人类与机器之间关系的叙述。不仅以娱乐性的观众而闻名,阿西莫夫的定律反映了关于人与技术之间关系的共同想象,渗透到科幻小说范围之外,塑造了我们对政治,人类和自由的定义背后的一些基本假设。我们的论点始于解释《故事》(1942年),《风险》(1955年),《百年纪念人》(1976年),以及基金会和地球(1986),通过伊曼纽尔·坎特(Immanuel Kant)和汉娜·阿伦特(Hannah Arendt)的审判哲学。这样做,我们指出的是,这些故事的哲学弧线写在有关谁(或什么)能够确定性和反思性判断力的紧张局势中。然后,跟随理论家通过后人类主义的角度解释了阿西莫夫的“零法”,我们认为,阿西莫夫的诉讼受到反思性判断的概念的约束,因为反思性判断本质上是人类中心的,并且仅限于封闭的系统。相比之下,我们提出了这样的论点,即仅通过分布式和偶然的系统(包括人类和非人类)出现反思性判断。那么,应保持我们的注意力的原因不是对挑战人类优势的自主人工智能的生存焦虑,而是建立和维护能够维持反思性判断的分布式形式的技术系统的政治。