对未来的网格级存储应用有吸引力。金属Zn作为AZB的理想阳极,具有最高的理论能力(5851 mAh ml -1)。它也是无毒的,不可易变的,丰富的,并且具有良好的电导率和水稳定性。[1-5]然而,循环过程中的召开金属锌阳极遭受严重的树突形成,造成了严重的问题,例如较差的可逆性,电压滞后,寄生反应增加,缩短了电池损坏造成的电池故障以及其他问题。[1,3,6]这些树突状结构,稀有的针或非平面血小板沉积物,在电极的不规则或有缺陷区域偏爱形成,在该区域中,局部电流密度最高,初始核核事件最有可能[7],并且在高电流和coscAcs cocclities和coscling cancling cancling and coscling and cancliesitions [7]。[8,9]控制和抑制树突状增长的策略围绕着操纵电力,通常是通过包含添加剂[10-15],或通过将电极设计到高面积的海绵中[16-18],[16-18]或保护表面涂料,[19]以供应,[19]以抑制构建dendrite。
摘要:氧化锌(ZnO)是一种众所周知的半导体材料,由于其出色的电气,机械和独特的光学特性。ZnO纳米颗粒被广泛用于微电源和光电设备的工业规模生产,包括金属氧化物半导体(MOS)气体传感器,光发射二极管,晶体管,晶体管,电容器和太阳能电池。这项研究提出了通过静电纺丝技术优化纳米化ZnO的合成参数。盒子 - Behnken设计(BB)已使用响应表面方法(RSM)应用,以优化选定的静电纺丝和烧结条件。成功研究了施加电压,尖端到收集器距离和退火温度对ZnO颗粒尺寸的影响。扫描电子显微镜(SEM)和透射电子显微镜(TEM)图像确保了乙酸聚乙烯基吡咯烷酮 - 乙酸锌(PVP-ZNAC)的形成,并在退火后纳米结构的ZnO。X射线衍射(XRD)模式表示具有高结晶度的ZnO的六角形结构的纯相。最小尺寸的ZnO纳米颗粒以16 kV的恒定电位合成,收集器和喷嘴之间的距离为12 cm,流量为1 ml/h,钙化温度为600°C,结果表明,纳米化的ZnO表明ZnO具有尺寸和形式的精确浓度,可以通过vary和Sinoring sinoring sinoring和Sinoring sinering snerurnning andersranting sinering anderstrance andersranting sinering andering sinering andoring sinering andornning。
这是一种很有前途的光吸收材料,具有低成本溶液加工、易于制造和优异的光电性能。[1,2] 自从首次报道采用甲基铵碘化铅 (MAPbI 3 ) 的钙钛矿太阳能电池 (PSC) 以来 [3],它们的小面积电池能量转换效率 (PCE) 现在已超过 25%。[4,5] PSC 的高效率是通过成分工程 [6–8]、表面钝化 [9–13] 和/或使用各种添加剂来调整钙钛矿层来实现的。[14–16] 除了钙钛矿层的组件工程外,人们还致力于开发高效的电荷传输层。[17–21] 特别是,电子传输层 (ETL) 在实现高效稳定的 PSC 中起着重要作用。 [22,23] 到目前为止,二氧化钛 (TiO 2 ) 是 PSC 中广泛应用的电子传输层,但其存在电导率低、表面缺陷密度高的问题。[24] 在替代电子传输层中,氧化锌 (ZnO) 因其高电子迁移率和与钙钛矿材料能级匹配良好而被视为一种方便的候选材料。[25,26] 这
具有交错结构(例如蚀刻停止 (ES) 和背沟道蚀刻 (BCE) 结构)的铟镓锌氧化物 (IGZO) 薄膜晶体管 (TFT) 已被证明可用作平板显示器中的电路器件 [1,2]。然而,由于栅极和源/漏极 (S/D) 电极之间的重叠,这些交错结构器件不可避免地具有较大的寄生电容,从而导致 TFT 器件的工作速度较低。自对准 (SA) 共面结构是克服该寄生电容问题的一种有前途的解决方案 [3]。形成导电的 n + -IGZO 以获得有源 S/D 区和 S/D 电极之间的欧姆接触是 SA 共面器件的重要工艺。已经提出了许多用于该工艺的方法,并且制备的 IGZO 器件具有良好的性能。通常使用等离子体处理(Ar、H2 等)[4,5] 和深紫外(DUV)照射 [6] 。然而,这些解决方案需要一个额外的步骤,如图 1a 所示,这会导致额外的工艺成本。在 SiO2 栅极绝缘体(GI)过蚀刻期间形成 n + -IGZO 是一种简单的方法 [7,8]。然而,当 GI 蚀刻等离子体可以蚀刻 IGZO 薄膜时,这种方法并不适用。最近,已经证明通过简单地涂覆有机层间电介质(ILD)可以形成 n + -IGZO 区域,并且获得了 24 Ω·cm 的沟道宽度归一化 S/D 串联电阻(R SD W)[9]。本报告展示了在 ILD 沉积过程中形成 n + -IGZO 区域的可能性。基于这个想法,其他制造低 R SD W SA 共面 IGZO TFT 的新方法值得研究。在这项工作中,我们使用磁控溅射工艺沉积 SiO x ILD 并同时为 SA 共面 IGZO TFT 形成 n + -IGZO 区域。这样,ILD 沉积和 n + 形成可以合并为一个步骤,如图 1b 所示。制造的器件具有相当低的 R SD W 。降低 IGZO 薄膜的机制
该试点项目重点测试了由 Urban Electric Power (UEP) 开发并集成到储能系统中的锌锰二氧化 (ZnMnO 2 ) 电池的性能,用于长时间应用。UEP 的技术利用了人们熟悉的“AA”碱性电池中使用的相同化学成分,利用丰富且价格合理的原材料,但可充电用于并网储能。电池符合适用的安全标准,并且与锂离子技术不同,不易发生热失控。UEP 在纽约制造电池并组装储能系统,系统平衡组件也在美国制造。除了不间断电源 (UPS) 产品外,UEP 还在开发储能解决方案,预计将于 2022 年为客户和公用事业应用达到商业准备就绪状态。
中空碳材料因其独特的多孔结构和电性能被视为催化和电化学储能中重要的支撑材料。本文以铟基有机骨架InOF-1为骨架,在惰性氩气下通过纳米氧化铟与碳基质的氧化还原反应形成铟颗粒。具体地说,通过在脱羧过程中结合铟的熔融和去除,原位获得了一种多孔中空碳纳米管(HCNS)。合成的HCNS具有更多的电荷活性位点以及短而快的电子和离子传输通道,以其独特的内部空腔和管壁上相互连通的多孔结构,成为碘等电化学活性物质的优良载体。此外,组装的锌碘电池(ZIBs)在1 A g -1 时提供234.1 mAh g -1 的高容量,这确保了电解质中碘物质的吸附和溶解达到快速平衡。基于HCNS的ZIBs的倍率性能和循环性能得到大幅提升,表现出优异的容量保持率,并表现出比典型的单向碳纳米管更好的电化学交换容量,使HCNS成为新一代高性能电池的理想正极材料。
在新型储能器件中,水系锌离子电池(AZIBs)凭借低成本、高安全、绿色环保等显著优势成为当前的研究热点,但其正极材料的循环稳定性不尽如人意,给AZIBs的实际应用带来了很大的障碍。近年来,围绕AZIBs正极材料稳定性优化策略开展了大量系统而深入的研究。本文总结了正极材料循环稳定性衰减的因素以及通过空位、掺杂、目标修饰、组合工程等优化AZIBs正极材料稳定性的策略,并提出了相关优化策略的机理和适用的材料体系,最后提出了未来的研究方向。
纸质电子产品为柔性和可穿戴系统提供了一种环境可持续的选择,并且完美适配现有的印刷技术以实现高制造效率。作为耗能设备的核心,纸基电池需要与高保真度的印刷工艺兼容。在此,水凝胶增强纤维素纸 (HCP) 被设计用作纸电池的隔膜和固体电解质。HCP 可以承受比原始纸更高的应变,并且在四周内可在自然环境中生物降解。印刷在 HCP 上的锌金属 (Ni 和 Mn) 电池具有显著的体积能量密度 ≈ 26 mWh cm –3 ,并且还具有可切割性和与柔性电路和设备的兼容性。因此,可以通过将印刷纸电池与太阳能电池和发光二极管集成来构建自供电电子系统。该结果凸显了水凝胶增强纸用于无处不在的柔性和环保电子产品的可行性。
请引用本文:Ha, J. 等人(2021 年)。突变型 p53 DNA 结合域和全长蛋白的尿素变性、锌结合和 DNA 结合试验。Bio-protocol 11(20): e4188。DOI:10.21769/BioProtoc.4188。