NIST 的 QIS 历史 • 1992 年 Wineland 建议使用自旋压缩来提高时钟的灵敏度 • 1993 年启动能力项目以支持这一想法 • 1994 年在盖瑟斯堡的 NIST 举行了第一届 QI 研讨会(1994 年 8 月) • 1994 年 NIST 开始探索使用相关光子进行绝对探测器校准 • 1995 年 Cirac 和 Zoller 提出基于离子阱的门 • 1995 年 Wineland 和 Monroe 实现了第一个量子门 • 2000 年建立 NIST QI 计划 • 2000 年第一个 NIST 量子计算能力 • 2001 年 DARPA 支持量子通信工作 • 2003 年扩大 NIST QI 计划 • 2003 年 NIST 举办第一届单光子研讨会 • 2005 年第一个 NIST QI 倡议获得资助 • 2006 年建立联合量子研究所 • 2012 年 Wineland 因支持QIS • 2104 计算机科学量子信息联合中心(QuICS)成立
NIST 的 QIS 历史 • 1992 年 Wineland 建议使用自旋压缩来提高时钟的灵敏度 • 1993 年启动能力项目以支持这一想法 • 1994 年在盖瑟斯堡的 NIST 举行了第一届 QI 研讨会(1994 年 8 月) • 1994 年 NIST 开始探索使用相关光子进行绝对探测器校准 • 1995 年 Cirac 和 Zoller 提出基于离子阱的门 • 1995 年 Wineland 和 Monroe 实现了第一个量子门 • 2000 年建立 NIST QI 计划 • 2000 年第一个 NIST 量子计算能力 • 2001 年 DARPA 支持量子通信工作 • 2003 年扩大 NIST QI 计划 • 2003 年 NIST 举办第一届单光子研讨会 • 2005 年第一个 NIST QI 倡议获得资助 • 2006 年建立联合量子研究所 • 2012 年 Wineland 因支持QIS • 2104 计算机科学量子信息联合中心(QuICS)成立
Tommaso Calarco教授率先应用了量子最佳控制方法在量子计算和多体量子系统中的应用。目前,科隆大学托马索大学理论物理学研究所的ForschungszentrumJülich彼得·格伦伯格研究所的量子控制研究所主任,汤马索大学理论上的量子信息教授,在费拉拉大学获得了博士学位,并开始在P. Zollerererersh of P. Zollersrruck of P. Zollersrruck of P. Zollerersrruck of inssfruck。他于2004年被任命为特伦托BEC中心的高级研究员,并于2007年在乌尔姆大学(University of Ulm)担任物理学教授,随后他成为复杂量子系统研究所和综合量子科学技术中心的主任。他于2016年撰写了《量子宣言》,该宣言发起了欧洲委员会的Quantum旗舰计划,目前是旗舰管理机构之一的主席:量子社区网络(QCN)。在2020年,他与QCN一起发起了一项计划,以建立欧洲量子工业的财团,该联盟已于2021年以欧洲量子工业联盟(QUIC)的名义合法建立。
Hulburt Oil & Gtease Co.。 密苏里州韦伯斯特格罗夫斯。 圣路易斯联合煤炭公司。 橄榄山。 111. Joy Mfg. Co.。 宾夕法尼亚州富兰克林。 DAVIS,A. J - Osborn & Lange,芝加哥,III。 DAVIS,WM Simplex Wire & Cable Co.,埃文斯维尔。 印第安纳州埃德华兹。 J. II _...“煤炭时代。” 西弗吉尼亚州亨廷顿。 ENGLISH。 THOS GARCIA。 JOHN A IIALBERSLEBEN。 PAUL HALLER,EMIL __ 圣路易斯联合煤炭公司。 橄榄山。 111. HAMILTON。 CHAS。 F.,V.-P Pyramid Coal Corp.,芝加哥, 111. HARVEY。 HADLEY Ohio Brass Co.,埃文斯维尔。印第安纳州。HASKINS,LEE - „ Bell & Zoller 煤炭与采矿公司,Zeigler,III。HAYDEN。CARL T.. G. M O'Gara 煤炭公司,芝加哥,111。HEFFERNAN。JACK _ DuPont Powder Co.,圣路易斯,密苏里州。HELM,GUI DO 圣路易斯联合煤炭公司,Mt. Olive。111。HELSON,J. R loyce-Watkins 公司,大都会,111。HUFF。GEO Dearborn 化学公司,圣路易斯,密苏里州。
我们提出了一个模拟量子模拟的理论框架,以捕捉实验可实现模拟器的全部范围,其动机是 Cirac 和 Zoller 首次提出的一组基本标准。我们的框架与复杂性理论中使用的汉密尔顿编码一致,在噪声下稳定,并涵盖了一系列实验可能性,例如模拟开放量子系统和使用 Lieb-Robinson 边界减少开销。我们讨论了模拟量子模拟中的可扩展性要求,特别是论证了模拟不应涉及随系统大小而增长的交互强度。我们为汉密尔顿复杂性理论中使用的小工具开发了一个通用框架,这可能与模拟模拟无关,特别是证明了在汉密尔顿局部性减少中,与尺寸相关的缩放是不可避免的。然而,如果允许额外的工程耗散资源,我们将展示一种使用量子芝诺效应绕过局部性减少不可行的定理的方案。我们的小工具框架为形式化和解决长期存在的小工具悬而未决的问题打开了大门。最后,我们讨论了模拟量子模拟中的普遍性结果。
A. Lu,A。A。Hahani,R。Robeck A. Zoller,C。Z。Z. N. C. Blumstein。 Clarke,L。N. Cooper,M。L. Cossette,J。 Day,J。Derocco,C。Dold,E。Ehmke,C。C. Emmons,St.Erbay,C。Farery,Erbay,C。Faulkes,St.H。L. Gerber,V。N. N. Gladyshev,V。Glob,R。G. Goya,M。J. Grant,C。B. 绿色,呃。 N. A. A. A. Mattison,M。McClure,J.M.Meudt,G.A。Montano,K。Mozhui,J。Munshi-South,A。Naderi,M。Nagy,P。Odom,D。T。T. T. T. T. T. T. T. T. G. Ophir,A。G。Ophir,St。Osborn,EA。 A. Odder,K。M。Parsons,K。Paul,M。Pellegrini,K。JPeters,A。 B.A. Lu,A。A。Hahani,R。RobeckA. Zoller,C。Z。Z. N. C. Blumstein。 Clarke,L。N. Cooper,M。L. Cossette,J。Day,J。Derocco,C。Dold,E。Ehmke,C。C. Emmons,St.Erbay,C。Farery,Erbay,C。Faulkes,St.H。L. Gerber,V。N. N. Gladyshev,V。Glob,R。G. Goya,M。J.Grant,C。B.绿色,呃。 N.A. A. A. Mattison,M。McClure,J.M.Meudt,G.A。Montano,K。Mozhui,J。Munshi-South,A。Naderi,M。Nagy,P。Odom,D。T。T. T. T. T. T. T. T. T. G. Ophir,A。G。Ophir,St。Osborn,EA。 A. Odder,K。M。Parsons,K。Paul,M。Pellegrini,K。JPeters,A。B.B. Pedersen,J。L. Petersen,D。W. Pieters,G。M. Pinho,J。Plassais,J。R. Pogank,N。A. Prado,P。Reddy,B。R. R. R. R. R. Ribbins,J。Ryguez,A。A.B. Salman,A。Sanghavi,K。M. Schtschneider,D。Schmiter,T。Schmitt,L。Schomacher,L。B. Schook,K。E. Sears,A。W. Seifert,A。SeluanovA. Shanmugatayam,A。V。Shindyapina,M。Singh,K。Singh,I。Sinha,J。Slone,R。G。Slonell,E。Soltanmaohahammadi,M。C。Sp。 T. Stewart,V。J. Sugrue,B。Szladovits,J。S. Takahashi,M。Takasugi,E。C. Teeling,M。J. Thompson,B。van Bonn,S。C. Vernes,D。Villar,H。V. Venters,M。C. Wallingford,N。Wang,R。K. Wayne,G。S. Wilkinson,C。K. K. K. K. K. K. K. K. K. K. K. K. K. Williams,R。W. Yang,B。Zhao,B。
06 适合每种应用的正确测量解决方案——从简单到高度复杂的任务 08 检测和测量技术? ZOLLER 拥有解决方案 – 适用于完美的修磨或制造过程 10 创新技术,实现最高精度 12 清晰直观的软件 14 »pomBasic« 和 »pomBasicMicro« – 通用刀具检查的紧凑解决方案 16 »pomSkpGo« – 切削刃准备测量的移动解决方案 18 »pomZenit« – 铣头制造的测量和检查站 20 »smile / pilot 3.0« – 刀具和砂轮测量的专业起步 22 »smartCheck« – 用于检查刀具的通用测量机 24 »genius 3s« 和 »genius 3m« – 用于精密刀具的通用测量机 26 »threadCheck« – 专用于螺纹刀具的通用测量机 28 »titan« – 适用于所有精密刀具的高端检查和测量机 30 »hobCheck« – 完全解决方案圆柱滚齿机的自动测量 32 »sawCheck« — 用于全面检查精密锯的测量和检测机 34 »roboSet« — 针对高刀具生产率公司的自动化解决方案 36 »roboSet 2« — 针对刀具生产率极高的工具制造商的 24/7 自动化解决方案
经典计算机的历史是从使用真空管的初始概念验证,到最终完善的现代硅基架构而发展起来的。现在,量子计算机正从概念验证转向实用设计,并且正处于扩展到越来越多相干、连接良好的量子比特的阶段。自从 Cirac 和 Zoller 证明了一种将任意幺正运算应用于离子线性阵列的可行方法 [1] 以来,离子量子计算机一直是量子计算发展的有力竞争者。最近,霍尼韦尔 [2] 和 IonQ [3] 推出了两台使用镱的工业量子计算机。这些计算机采用镱同位素离子 171 Yb + 最外层 S 壳层的价电子来编码量子比特的状态。有两种相互竞争的架构:MUSIQC 和 QCCD [4,5]。为什么要使用稀土元素呢? [Xe] 4f 14 6s 1 电子构型之所以具有吸引力,是因为它通过使用 P 轨道实现了超精细到光学的耦合。此外,它相当容易实现。有几种元素和同位素可能适合这种构型。为什么特别选择 171 Yb +?选择这种同位素的动机是需要核自旋 1/2、观测稳定性和一阶塞曼不敏感时钟状态。可以考虑放射性同位素,但同位素必须足够稳定和普遍,以便与典型的金属源隔离。此外,我们要求电离能合理,电离原子带正电。171 Yb + 是唯一满足这些限制的同位素。
我们感谢许多使本书得以问世的人。Tessa Ogden、Sophie Roughton、Nadine Clarke、Mandy Chan 和 Anil Shamdasani 为这个项目提供了关键支持。他们的奉献精神堪称典范,他们的耐心无与伦比。我们感谢本书的作者以及对早期版本章节提供反馈并帮助我们改进本书的同事:Engin Akçakoca、Dimitar Bogov、Catherine Bridge Zoller、Oleg Churiy、Pervin Dadashova、Andriy Gostik、John Gordon、Namjee Han、Maxym Kryshko、Sung-Ah Kyun、Yevgeniya Korniyenko、Francis Malige、Piroska Nagy、Tamas Nagy、Sergiy Nikolaychuk、Maksym Obrizan、Aude Pacatte、Matteo Patrone、Olena Pavlenko、Tricia Park、Alexander Pavlov、Iryna Piontkivska、Alexander Plekhanov、Olha Poharska、Artur Radziwill、Peter Sanfey、Nayoon Seo、Dmytro Sergeyev、Dmytro Sologub、Elena Sulima、Rada Tomova、Dejan瓦西里耶夫、大卫·瓦夫拉、维塔利·瓦夫里舒克、奥克萨娜·亚沃尔斯卡娅和凯特琳娜·亚先科。非常感谢他们的意见。这本书在很短的时间内被翻译成乌克兰语。我们感谢 Olena Baklanova、Volodymyr Goshylyk、Victoria Kish、Taras Omelchenko、Anna Petrova 和 Kateryna Tizenberg 为将本书交付给乌克兰读者所做的努力。
在非相对论量子系统中,利布-罗宾逊定理 [1-2] 规定了一个新出现的速度限制 v,在幺正演化下建立了局部性,并限制了执行有用量子任务所需的时间。在本次演讲中,我将介绍我们的工作 [3],即将利布-罗宾逊定理扩展到具有测量和自适应反馈的量子动力学。与测量可以任意违反空间局部性的预期相反,我们发现量子信息的速度最多可以提高 (M+1) 倍,前提是已知 M 个局部测量的结果;即使经典通信是即时的,这也是如此。我们的界限是渐近最优的,并且被现有的基于测量的协议所饱和 [4]。我们严格限制了量子计算、纠错、隐形传态以及从短程纠缠初始状态生成纠缠资源状态(Bell、GHZ、Dicke、W 和自旋压缩状态)的资源要求。我们的研究结果限制了使用测量和主动反馈来加速量子信息处理,并限制了大量已提出的量子技术的可扩展性。参考文献:[1] Lieb 和 Robinson,“量子自旋系统的有限群速度”,Comm. Math. Phys. 28, 251 (1972)。[2] Chen, Lucas 和 Yin,“多体量子动力学中的速度限制和局部性”,arXiv:2303.07386。[3] Friedman, Yin, Hong 和 Lucas,“带测量的量子动力学中的局部性和误差校正”,arXiv:2206.09929。[4] Briegel, Dur, Cirac 和 Zoller,“量子中继器:不完美局部操作在量子通信中的作用”,Phys. Rev. Lett. 81, 5932 (1998)。