我们考虑单个计算的最低热力学成本,其中单个输入X映射到单个输出y。在先前的工作中,Zurek提出了这一成本由k(x | y)给定的x的条件kolmogorov复杂性(最多取决于x或y)。但是,该结果源自非正式参数,仅应用于确定性计算,并且对协议选择(通过加法常数)有任意依赖性。在这里,我们使用随机热力学来从严格的哈密顿公式中得出Zurek的广义版本。我们的边界适用于所有量子和经典过程,无论是嘈杂还是确定性,它明确捕获了对协议的依赖性。我们表明,k(x | y)是将x映射到y的最低成本,必须使用热,噪声和协议复杂性来支付,这意味着这三个资源之间的权衡。我们的结果是一种“算法波动定理”,对第二定律与物理教会培养论文之间的关系有影响。
量子相变的特征是围绕过渡的关键区域中的通用缩放定律。通过量子千里布尔 - Zurek机制的关键实时动力学也表现出了这种普遍性。在最近的Rydberg原子量子模拟器上的实验中,kibble-Zurek机制已用于探测量子相变的性质。在本文中,我们分析了与此方法相关的警告,并制定了提高其准确性的策略。fo for-我们研究边界条件的效果,端点的位置和一些微小的扭结操作员定义。特别是,我们表明,最直观类型的扭结类型的临界缩放对正确的端点选择非常敏感,而更高级类型的扭结类型表现出非常强大的通用缩放。fur-hoverore,我们表明当在整个链上跟踪扭结时,固定边界条件提高了缩放的准确性。出乎意料的是,无论选择固定边界条件是对称还是反对称的,千里布尔 - Zurek临界缩放率似乎同样准确。最后,我们表明,在长链的中央部分提取的扭结密度遵守所有类型的边界条件的预测通用缩放。
量子纠缠是量子力学的基本性质之一[1],也是量子信息和量子计算领域的核心资源[2–4]。但相关理论和实验证实,量子纠缠并不是唯一的量子关联,即使是非纠缠系统,也可能存在其他类型的量子关联,其中之一便是Olivier和Zurek基于冯·诺依曼熵引入的量子不和谐(QD)[5]。由于QD的重要性和普遍性,其表征、量化和功能已被广泛研究。但QD的计算需要最小化过程,计算难度较大,此前仅针对相当有限的量子态进行了专门计算,对于更一般的量子态的定义是
为了参与这一讨论,我们探讨了巴拉德的代理实在论与量子退相干和量子达尔文主义的关系(Schlosshauer,2019;Zurek,1994、2003、2009、2018、2022)。我们认为,这些对量子物理的解读本身也在不断发展,它们将新唯物主义的焦点从量子力学转移到物质本体论和社会规模的涌现上。我们并不是反对新唯物主义;我们支持它作为一项政治和智力项目,推动它跨学科地与世界接触,并超越社会建构主义等其他社会理论体系的局限。相反,我们建议批判性地考虑巴拉德(2007)代理实在论背后的物理学,以及该领域的发展和在社会领域思考巴拉德理论的持续挑战。
将意识与量子力学联系起来,过去曾面临批评。反对它的常见论据要么是人体环境对量子效应是敌对的,要么是对“量子力学是关于微观对象”的误解。量子力学的最新实验确认(Bild等人。2023)以及其最奇怪的预测的越来越多的相关性,例如叠加和纠缠,即使对于宏观对象,这些预测也可能是可能的(Schrödinger1935)也扩展了我们对量子原理的理解,强调了量子效应不是按规模确定的,而是通过信息可及性来确定的。在电子观察者理论(EOT)中,电子不是孤立的,而是与每个“环境片段”相互作用,即在量子darwinism中提出的一个概念(Zurek 2009),在发生神经信号期间。因此,它不仅限于环境条件。
引入了一类新的信息物理学 [1],其中提出物理熵是两个相互补偿的量值的组合。观察者的无知用香农统计熵来衡量 [4],算法熵度量被观察系统的无序性(将其记录在内存中所需的最小位数)。Atlan [5] 定义系统的有序性是最大信息内容(可能的多样性)和最大冗余之间的承诺。模糊性可以被描述为噪声函数,它可以以负面的方式(破坏性模糊性)表现出来,具有经典的解组效应,也可以以正面的方式(自主性产生模糊性)表现出来,通过增加系统某部分的相对自主性,减少系统的自然冗余并增加其信息内容来发挥作用。我们可以将 Zurek 的方法 [1] 扩展到复杂领域,其中物理熵是一个可以分解为 x 轴和 y 轴的变量。x 轴表示
研究项目:测量问题和量子到经典的转变是自量子理论出现以来的主要概念问题,并且自近年来量子技术的发展以来已成为核心的实际问题。退相干的物理学源自系统与其环境之间的纠缠,它为深入理解这些问题奠定了理论基础。然而,尽管取得了许多成功,量子到经典的问题仍然没有完全阐明。传统的退相干方法中缺少的一个核心要素是研究观察者本身的物理学,而不仅仅是系统的物理学,以便了解配备特定资源的观察者网络如何重建共同的经典图像(如果存在的话)。Zurek 关于量子达尔文主义的工作强调了这个问题,其中量子信息理论的工具占主导地位。然而,这些想法仍处于起步阶段,需要工具来评估经典图像的存在和观察者网络的重建能力。该项目旨在构建一个基于资源的通用量子信息框架,使我们能够精确分析经典描述的出现和重建问题。这项工作的具体目标是通过研究测量信号来检验这些一般思想。本项目将解决以下问题:
Cormac Toher,Corey Oses,David Hicks,Eric Gossett,Frisco Rose,Pinku Nath,Demet Usanmaz,Denise C. Ford,Eric Perim,Camilo E. Calderon,Jose J. Plata,Yoav Lederer,MichalJahnátek,MichalJahnátek,Wahyu Setyawan,Shidyong Richnong,Shidong Wang,junk wang shiv shiv shiv sevin v戈麦斯,盖夫。 M. Trov和M. Trov。
了解相互作用的粒子如何接近热平衡是量子模拟器面临的主要挑战 1,2。要充分释放此类系统以实现这一目标,需要灵活的初始状态准备、精确的时间演化和对最终状态表征的广泛探测。在这里,我们介绍了一个由 69 个超导量子比特组成的量子模拟器,它支持通用量子门和高保真模拟演化,其性能在交叉熵基准实验中超出了经典模拟的范围。与纯模拟模拟器相比,这个混合平台具有更多功能的测量功能,我们利用这些功能揭示了 XY 模型中由粗化引起的 Kibble-Zurek 缩放预测 3 的崩溃,以及经典的 Kosterlitz-Thouless 相变的特征 4。此外,数字门可以实现精确的能量控制,使我们能够研究本征态热化假设 5-7 对本征谱目标部分的影响。我们还展示了成对纠缠二聚体状态的数字制备,并对模拟演化中随后的热化过程中能量和涡度的传输进行了成像。这些结果确立了超导模拟数字量子处理器在多体光谱中制备状态和揭示其热化动力学方面的有效性。
量子信息可以视为一个相当新的领域,它代表使用量子力学对信息处理任务的研究。我们可以将其视为经典信息理论与量子力学之间的综合,这是一种可行的方式,因为,经典信息理论使用一种语言,可以帮助您掌握量子力学中仍未解决的问题。此外,我们还可以看到,即使使用经典系统不可能,量子机械系统也可以执行经典信息处理任务。在量子信息理论的核心上,有量子相关性代表了量子信息处理任务的描述和绩效的必不可少的物理资源[1,2]。最著名和最使用的资源之一是纠缠,但是它并没有描述所有现有的量子相关性,因为存在可分离的混合状态,这些状态无法通过经典概率分布来模拟[3,4]。在这种思维方式中,Zurek [3,5]提出了一个量化两分系统中量子相关总量的定量,称为量子不一致,该量子可能具有可分离状态的非零值。在过去几年中,已深入研究了连续变量的开放系统中量子相关性的变色和动力学[6-15]。最近我们