摘要:胆汁酸代谢是肠道菌群调节的关键途径。peptaceTobacter(梭状芽胞杆菌)Hiranonis被描述为负责将原发性转化为狗中二次粪便未结合的胆汁酸(FUBA)的主要物种。该多步生物化学途径由胆汁酸诱导(BAI)操纵子编码。我们的目的是评估海藻链球菌的丰度,一个特定基因(BAICD)(BAICD)的丰度和次级FUBA浓度之间的相关性。在这项回顾性研究中,分析了24只狗的133个粪便样品。使用qPCR确定了海藻假单胞菌和BAICD的丰度。通过气相色谱 - 质谱法测量FUBA的浓度。BAICD丰度与次级Fuba(ρ= 0.7377,95%CI(0.6461,0.8084)),p <0.0001)表现出很强的正相关。类似地,海藻和次级fuba之间存在很强的相关性(ρ= 0.6658,95%CI(0.5555,0.7532),p <0.0001)。未观察到表现出FUBA转化和缺乏Hiranonis的动物。这些结果表明,海藻链球菌是狗中原发性胆汁酸的主要转换器。
1米兰大学医学生物技术与转化医学系的肥胖研究中心,通过Vanvitelli 32,米兰,20129年,意大利; 2人类研究医院心血管医学系,Manzoni 56,20089 Rozzano(米兰),意大利; 3人类大学生物医学科学系,通过Rita Levi Montalcini 4,20090 Pieve Emanuele(米兰),意大利; 4麻醉,医学和生理学系,美国加利福尼亚大学90095 CA,美国加利福尼亚分校的David Geffen医学院; 5意大利国家研究委员会,遗传学与生物医学研究所,米兰,20090年,意大利; 6意大利安科纳60126的马尔凯理工大学实验与临床医学系;和布雷西亚大学布雷斯西亚大学分子与转化医学系7,意大利25123
简单总结:纳米技术为癌症的诊断和治疗提供了新方法。与“游离”形式的药物相比,纳米药物可以增加疾病部位的有效载荷浓度、降低毒性并增强治疗效果。球形核酸 (SNA) 是一种新型寡核苷酸纳米治疗剂,目前正在探索将其作为基因调控和免疫刺激结构,以克服实体肿瘤中的耐药性和免疫抑制。本综述重点介绍了开创性研究,这些研究将 SNA 确定为基因调控、先天免疫激活和下一代癌症疫苗开发的强大平台,讨论了最近将基础发现从实验室转化为临床的努力,并展望了旨在充分利用 SNA 平台治疗潜力的未来研究。
摘要 乳香提取物 (BE) 的生物活性归因于其主要活性成分,即乳香酸 (BA)。BE/BA 在神经退行性疾病方面具有良好的治疗潜力,包括阿尔茨海默病 (AD)。AD 病理生理的多因素性质要求开发疾病修饰剂 (DMA)。最近用于 DMA 开发的多靶向方法引起了人们对植物衍生化合物的更多关注,因为它们具有更好的人体相容性,因为它们具有生物来源。本综述基于现有的计算机模拟、体外、体内研究和临床试验,介绍了当前对 BE/BA 抗 AD 活性的认识。讨论了 BE/BA 在炎症途径、Tau 和 β-淀粉样蛋白、微管功能、氧化应激、胆碱酯酶和与 AD 有关的糖尿病/胰岛素途径中的贡献。已在体外和体内证实了 BA 在不同的 AD 相关途径中的功效。它们可被视为抗 AD 药物发现和开发中多靶点 DMA 的有价值的支架/先导化合物。
由于人口不断增长,粮食安全问题变得十分重要。作为固着生物,植物已经进化出复杂的机制来应对病原体。植物的生长发育需要营养物质的获取和运输,这些营养物质介导植物细胞信号传导并激活促生长和/或抗病原体基因的表达。营养物质,包括糖和氨基酸,是高产作物生产所必需的,但也与植物-微生物相互作用密切相关。微生物利用多种策略来适应植物,包括增强根细胞表面以吸收营养、竞争环境营养、劫持植物营养以及改变细胞营养运输和信号传导。这些有益或有害的影响会导致植物微生物群的转变。因此,分析营养物质在植物防御中的作用对于提高施肥效率至关重要。镰刀菌穗枯病 (FHB) 严重威胁小麦的质量和产量。赵等人。对抗性基因型苏麦3号和感病基因型山农20接种禾谷镰刀菌后代谢产物进行了分析,结果表明,不同品种间部分氨基酸含量发生了明显变化,外源施用脯氨酸(Pro)和丙氨酸(Ala)可增强小麦对禾谷镰刀菌的抗性,而外源施用半胱氨酸(Cys)则加重小麦的感病性,说明小麦的氨基酸代谢与抗性密切相关。尖镰孢菌是引起烟草根腐病的主要病原菌,严重影响烟草的生长。200F 的毒力测定 . oxysporum 菌株的鉴定以及表达模式的鉴定表明基因与毒力水平呈正相关,并表明 ATP 合成酶基因通过抑制烟草中糖最终输出转运蛋白 (SWEETs) 的表达水平对 F. oxysporum 的毒力很重要 [Gai et al.]。根结线虫 Meloidogyne incognita 感染显著改变了拟南芥中 SWEETs 的表达水平。组织学和遗传分析表明,M. incognita 感染诱导 AtSWEET1 在瘿中特异性表达,突变
- )向肠上皮细胞(IEC)提供70%的能量,支持紧密结的蛋白质形成,诱导炎性细胞因子的产生,并抑制组蛋白脱乙酰基酶(HDAC)。丁酸酯也与脑创伤的恢复,痴呆症的改善,减轻自身免疫性脑炎以及几种肠道疾病有关。低水平的SCFA与高血压,心血管疾病(CVD),中风,肥胖和糖尿病有关。顺式 - 棕榈酸(C 16 H 30 O 2),一种单不饱和脂肪酸(MUFA),可提高胰岛素敏感性并降低发生CVD的风险。脂肪棕榈酸降低了促炎性细胞因子IL-1β(pro-IL1β),肿瘤坏死因子α(TNF-α)和异亮氨酸6(IL-6)的表达。通过饮食提供多不饱和脂肪酸(PUFAS),例如Omega-3和Omega-6。环氧合酶(COX)和脂氧酶(LOX)将PUFAS的转化导致产生抗炎的前列腺素和白细胞素。亚油酸(La,C 18 H 32 O 2)的氧化是一种omega-6必需脂肪酸,导致形成13-氢氧基八氧化脱发酸(13-Hpode,C 18 H 32 O 4),从而诱导炎性细胞因子。Omega-3 Pufas,例如eicosapentaenoic Acid(EPA,C 20 H 30 O 2)和Docosahecahexaenoic Acid(DHA,C 22 H 32 O 2),较低的触发器IDE水平,降低了出现某种癌症,阿尔茨海默氏病和痴呆症的风险。在这篇综述中,讨论了SCFA,MUFA,PUFA和饱和脂肪酸(SFA)对人类健康的重要性。研究了脂肪酸在疾病治疗中的使用。
•什么是DNA?•细菌细胞中存在哪些类型的DNA分子?•典型细菌病原体的遗传物质大小是多少?•细菌病原体有多少个基因?•细菌基因的平均大小是多少?
摘要摘要,促进大豆粉减少和取代以及较低的蛋白质饮食技术,中国已成为饲料氨基酸的主要全球生产国。然而,由于氨基酸行业在独立发展工业菌株方面相对较晚而面临重大挑战,从而导致相对落后的主要经济和技术参数以及不那么强大的知识产权框架。合成生物学的快速进步为产生氨基酸的菌株设计和优化提供了有希望的途径,为氨基酸发酵行业提供了新的机会,以增强全球竞争力。这项研究对国内和国际市场对饲料氨基酸的需求进行了深入的分析,系统地回顾了微生物氨基酸生产中的关键技术突破,并确定了家庭氨基酸行业面临的主要挑战。此外,它还进一步探讨了微生物氨基酸产生的未来发展趋势和挑战,并提出了一系列有针对性和全面的解决方案,以提供深入的见解和指导,以为微生物氨基酸行业的稳定和加速增长提供指导。
这项测试是开发的,其性能特征由ARUP实验室确定。尚未获得美国食品药品监督管理局的清理或批准。该测试是在CLIA认证的实验室进行的,旨在用于临床目的。
1 CF-UM-UP—米尼奥和波尔图大学物理中心,米尼奥大学物理系,葡萄牙布拉加 4710-057; patriciavilel@hotmail.com (私人); eduardabfer@gmail.com (英孚); telmabsoares@gmail.com (TBS) 2 细胞基因组学实验室,遗传学和生物技术系,Tr á s-os-Montes 和 Alto Douro 大学,5000-801 Vila Real,葡萄牙; fi lamega@utad.pt 3 bioisi-bosystems and integrative sciences institute, faculty of sciences, University of Lisbon, 1749-016 Lisbon, Portugal 4 FFP-I3Id-Innovation Institute, Innovation, FP-BHS-Biomedical and Health Sciences Research Unit, Faculty of Sciences Fernando Pessoa University, Carlos da Maia 296 Street, 4200-150 Porto, Portugal 5 Associate Laboratory I4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal 6 UCIBIO-Aapplied Molecular Bioscies Unit, Medtech-MEDICINES AND HEALTHCARE Products, Laboratory of Pharmaceutical GY, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 40 50-313 Porto, Portugal 7 CBMA-MOLECULAR AND ENVIRONMENTAL BIOLOGY CENTER, Department of Biology, University of Minho, 4710-057 Braga, Portugal * Correspondence: cmlopes@ufp.edu.pt (CML); mlucio@fisica.uminho.pt (ML) † 这些作者对这项工作做出了同等贡献。