本研究考虑了生物精炼的关键阶段,研究了大型藻类(Ulva ohnoi)的潜在循环经济方法。研究和报道了生物质干燥、生物炭生产(热解)和应用生物炭除磷等重要阶段。值得注意的是,将大型藻类生物质从平均湿基含水量约 70-85% 干燥至适合热转化的含水量约 10% 是一项艰巨的任务。对生物质和生物炭的物理化学性质进行了表征,并将其与它们吸附磷 (P) 的能力相关联。大型藻类生物质的初步热分析表明,主要重量损失发生在 150 至 550°C 之间。热解过程动力学表明需要 232 至 836 kJ mol − 1 之间的更高表观活化能。当热解过程的温度升高时,可以发现生物炭的孔径、表面积和孔体积增加。在批量实验中,在 700°C 下获得的生物炭的 P 吸附量最高(78 mg-P/g 生物炭),这可能是由于碱金属和碱土金属的可用性。拟二级模型很好地描述了 P 吸附的动力学研究。由大型藻类生物质生产的生物炭可被视为对环境有益且低成本的磷回收吸附剂。吸附后的生物炭由于含有大量的磷磷石,可在农业中用作缓释肥料。
摘要:微藻可以分别利用大气中的二氧化碳和阳光作为碳源和能量来源,产生工业相关的代谢物。开发用于高通量基因组工程的分子工具可以加速产生具有改良性状的定制菌株。为此,我们开发了一种基于 Cas12a 核糖核蛋白 (RNP) 和同源定向修复 (HDR) 的基因组编辑策略,以产生微藻 Nannochloropsis oceanica 的无疤痕和无标记突变体。我们还开发了一种基于附加质粒的 Cas12a 系统,用于在目标位点有效地引入插入/缺失。此外,我们利用 Cas12a 处理相关 CRISPR 阵列的能力来执行多路复用基因组工程。我们在一次转化中有效地靶向宿主基因组中的三个位点,从而朝着微藻的高通量基因组工程迈出了重要一步。此外,还开发了一种基于 Cas9 和 Cas12a 的 CRISPR 干扰 (CRISPRi) 工具,用于有效下调目标基因。我们观察到在 N. oceanica 中用 dCas9 执行 CRISPRi 后,转录水平降低了 85%。总体而言,这些发展大大加速了 N. oceanica 的基因组工程工作,并可能为改良其他微藻菌株提供通用工具箱。关键词:Nannochloropsis、微藻、基因组编辑、CRISPR-Cas、基因沉默、核糖核蛋白、Cas9、Cas12a ■ 介绍
“微藻”一词是指具有光合作用的单细胞细胞,包括来自两个生命领域的生物,即细菌(蓝藻)和来自初级(古藻体)或次级(例如,原生藻)内共生事件的各种真核生物演化支。尽管微藻在分类学上分布广泛,但它们具有一些共同的特征,使它们在某种程度上“相似”。产氧光合作用源自共同的起源,这使得微藻在营养网络中作为初级生产者占有重要地位。它们是单细胞的或形成非常小的菌落,其培养依赖于常见的方法,提供光、二氧化碳、水和营养物质。微藻可产生有价值的分子,如聚糖、脂质、色素、蛋白质等。因此,尽管“微藻”一词在植物学或分类学意义上并不恰当,但它在生态学和人类工业中有着其合法的含义。这既是将知识从一种生物体转移到另一种生物体时的弱点,也是解决类似生物技术问题时的优势。过去十年,发展以微藻为基础的产业已成为一项社会挑战。气候紧急情况和耕地压力使得每天对新型无碳和可持续生产的需求更加迫切。应用范围从食品、健康、绿色化学到生物燃料,有望利用从大气或碳排放行业捕获的二氧化碳生产生物分子。在这种背景下,“藻类行业”应运而生,聚集了专门从事藻类培养、收获、提取工艺和生物精炼的参与者。将野生藻类菌株转化为“藻类作物”,即“驯化”微藻,代表着一项艰巨的任务,因为可能存在感兴趣的初始特征,如相对较高的油、碳水化合物、色素等,但提高、可重复和可扩展产量的道路极具挑战性。农业领域可以吸取一些经验教训,为微藻领域的研究提供新的刺激。当人们在大自然中行走时,他或她会发现类似小麦、玉米、番茄、向日葵、油菜籽等的野生植物吗?与野生植物相比,农作物看起来又大又胖。此外,收获后,栽培种子很少逃逸并入侵未开垦地区。因此,植物驯化侧重于生产力和质量,而不是与野生群落竞争的适应性。野生植物和驯化植物之间的巨大差异表明,其他生命分支也应该可以获得产量的提高,请记住,栽培植物是二倍体,而目前大多数栽培的微藻是单倍体。
报告显示,截至 2019 年,马来西亚每年平均产生约 100 万吨塑料垃圾。全球研究人员广泛研究了各种来自天然和合成来源的可生物降解材料。在这些天然生物基生物聚合物中,大型藻类(例如海藻)近年来引起了广泛关注,因为与其他陆生植物相比,它具有多种优势。海藻的生长速度比陆生植物快 30 倍。海藻含有独特的藻胶,可以形成凝胶,但不幸的是,海藻的亲水性阻碍了其在应用上的进步。海藻生物聚合物的亲水性可以通过物理、机械和化学方法显著增强。使用伽马射线的物理技术证实了基质和填料之间的分子间键合增强,这有助于改善表面疏水性。通过添加有机生物填料,还可以利用机械技术来增强海藻生物聚合物的性能。同时,使用偶联剂处理(例如硅烷)的化学处理有助于修改羟基官能团以降低海藻生物聚合物的亲水性。一般来说,所有这些技术都增强了薄膜的拉伸、热和防水性能。这反过来又扩展了海藻在特殊应用中的可行性,例如农业覆盖、干粮和非食品包装。更多的研究包括海藻在生物医学应用中的应用,已经进行了广泛的研究。之所以选择海藻,是因为其可用性和可生物降解性。本次讲座首先批判性地强调了传统塑料、生物基塑料的最新问题以及大型藻类材料相关的挑战。之后,本次演讲重点介绍了我们为解决这一问题而进行的研究工作,这些研究工作采用了不同的修改和工艺技术。充分展示了加工材料及其潜在应用的确凿证据。关键词:大型藻类;绿色材料;生物聚合物;可持续包装;纤维素纤维。
•GAI隔离了硅藻(nitzschia sp。)这是他们在考艾岛增长设施的优越的户外菌株之一。生物量和脂质产量的进一步改善将使生物燃料应用受益。•由于在高生产率期间O 2水平,由于碳酸氢盐被吸收并在一天高温期间,pH值增加,因此pH值增加,pH值增加,pH值增加。•PNNL和矿山都在建立光生反应器方面都建立了专业知识,可以根据光强度和温度模仿太阳日,包括定制的浊度技术。•可以用氧化还原/pH/温度压力增加的细胞培养,以在“驯化条件”下选择更多稳健的菌株。•从已经有希望的压力开始,目标是进一步提高产量约20%。•其他应变(例如蓝细菌,藻类也有选择性的压力来减轻风险。•建立有机联盟。2
图 1. 开发微藻作为商业产品生物制造平台的遗传工具。生物信息学算法用于分析藻类基因组序列,从而产生密码子优化和基序发现技术,这些技术允许设计用于藻类菌株遗传转化的强表达载体。启动子和转录因子等调控元件允许重组基因表达和代谢途径操纵以获得感兴趣的产品。随机诱变和基因组改组可以进一步推动藻类生产菌株向所需的表型发展。这些工具正被用于探索从微藻中工业化生产食品、燃料、材料和药物。
抽象的遗传修饰的微藻被认为是生物能源和重组蛋白质产生的有用工具。然而,微藻核基因组中转基因的随机整合易受异源基因表达的基因沉默。在这里,我们试图使用CRE/ LOXP重组系统进行稳定的转基因表达,将靶向基因整合到雷目层的预定的核基因组位点中。我们构建了一个表达载体质粒编码报告基因(Zeocin耐药基因和绿色荧光蛋白基因; ZEO-2A-GFP)和突变的LOXP来产生创建者细胞。构建了编码IFNα-4的供体载体和抗性霉素的抗性基因,构造了相应突变的LOXP S,并与CRE表达载体一起构建并引入创始人细胞。通过计算抗霉素抗性菌落的数量来确定供体载体与CRE表达载体的最佳比率。对于已建立的克隆,使用各种特定引物集通过基因组PCR确认了靶向积分。供体载体中的靶基因可以使用CRE/ LOXP系统整合到Reinhardtii的预期基因组位点中。rt-PCR表明,IFNα-4在测试的五个独立的转基因细胞系中表达。该结果表明,基于CRE的细胞工程是一种产生表达外源基因的智能微藻的有前途的方法。
矿物营养:基本元素,宏观和微量营养素;元素本质的标准;基本要素的作用;离子跨细胞膜的运输,主动和被动传输载体,韧皮部韧皮部植物的易位,束缚实验;压力流模型;韧皮部负载和卸载酶:结构和特性;酶催化和酶抑制的机制。光合作用:光合色素(Chl A,B,Xanthophylls,胡萝卜素);光系统I和II,反应中心,天线分子; ATP合成的电子传输和机制; C3,C4和碳固定的CAM途径;光呼吸。呼吸:糖酵解,厌氧呼吸,TCA循环;氧化磷酸化,乙氧基化,氧化戊糖磷酸途径。氮代谢:生物氮固定;硝酸盐和氨气同化。植物生长调节剂:生长素,gibberellins,cytokinins,aba,乙烯的发现和生理作用。植物对光和温度的反应:光周期(SDP,LDP,日中性植物);植物色素(发现和结构),对光形态发生的红光反应;春化。-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
珊瑚礁底栖生物主要由珊瑚和藻类栖息,它们经常直接竞争空间。大量研究表明,珊瑚伴生细菌与周围海水不同,并且至少部分是物种特异性的(即同一种珊瑚上有同一种细菌)。在这里,我们将这些微生物研究扩展到珊瑚礁中发现的四种主要藻类生态功能群:直立和包覆钙化藻、肉质藻和草皮藻,并将结果与在造礁珊瑚 Montastraea annularis 上发现的群落进行比较。使用 16S rDNA 标签焦磷酸测序发现,不同的藻类属含有特征性的细菌群落,这些群落通常比珊瑚上的细菌群落更加多样化。虽然大多数与珊瑚有关的细菌与已知的异养生物有关,主要消耗富含碳的珊瑚粘液,但与藻类有关的群落含有大量自养生物。大多数与藻类有关的自养细菌是蓝藻,可能对藻类的氮循环很重要。与藻类相关的光合真核生物也种类丰富,包括
摘要:通过比较底物依赖性生长动力学,研究了 6 种具有不同生长策略的大型藻类在低氮 (N) 供应下维持生长的能力。在夏季藻类受氮限制时,通过实验确定了维持最佳生长所需的氮和 2 种慢速生长藻类的氮吸收动力学。Fucus r~resiculosus 和 Codium fragilc 以及 4 种快速生长的藻类,Chnetolnorpha Ij~~rn、Cladophora serica、Cerarn~um rubrum 和 Ulva lactuca。在藻类中维持最大生长所需的氮在藻类中相差 16 倍,其中慢速生长的藻类对氮的需求最高。短命藻类对氮的需求较高,这是因为其生长速度最高可达 13 倍,最大生长时氮含量高出 2 至 3 倍。另外,在低和高底物浓度下,快速生长的藻类吸收单位生物量铵和硝酸盐的速度比慢速生长的藻类快 4 至 6 倍,但慢速生长的藻类的最大磷吸收量与需求量的比值较大。因此,快速生长的藻类往往需要相对较高的外部无机氮浓度来达到饱和生长。在氮受限条件下,所有 6 种大型藻类都能通过短暂增强的速率吸收铵(即激增吸收)来利用高浓度铵的脉冲。然而,在较低的、自然存在的铵浓度下,吸收量仅略有增强,这表明激增吸收的生态重要性较小。我们的结果表明,在低氮供应条件下,生长缓慢的大型藻类可能比快速生长的藻类更能满足其氮需求。这与常见的观察结果一致,即营养贫乏的沿海地区主要以生长缓慢的大型藻类为主,而不是短命物种,尽管短命物种的氮吸收能力更高。