已经提出了多巴胺系统功能障碍来解释多动症的临床表现。ADHD患者已被证明缺乏适当的多巴胺水平。 神经递质多巴胺通常与大脑的愉悦体系有关,提供了享受和动力执行特定任务的感觉。 内源性大麻素系统已与包括ADHD在内的各种多巴胺相关疾病有关。 已经在实验中证明了内源性大麻素系统与多巴胺产生之间的复杂相互作用。 内源性大麻素主要负责多巴胺的释放是Anandamide,并且增加该分子的浓度已显示出治疗ADHD的治疗价值。 在本评论文章中,描述了增加配胺浓度的合成和天然外源和内源性方法。ADHD患者已被证明缺乏适当的多巴胺水平。神经递质多巴胺通常与大脑的愉悦体系有关,提供了享受和动力执行特定任务的感觉。内源性大麻素系统已与包括ADHD在内的各种多巴胺相关疾病有关。已经在实验中证明了内源性大麻素系统与多巴胺产生之间的复杂相互作用。内源性大麻素主要负责多巴胺的释放是Anandamide,并且增加该分子的浓度已显示出治疗ADHD的治疗价值。在本评论文章中,描述了增加配胺浓度的合成和天然外源和内源性方法。
摘要 N-花生四烯酰乙醇胺(也称为 anandamide)和 2-花生四烯酰甘油是大麻素受体的激活剂。内源性大麻素系统还包括结构和功能相关的脂质介质,这些介质不针对大麻素受体,例如油酰乙醇酰胺、棕榈酰乙醇酰胺和硬脂酰乙醇酰胺。这些生物活性脂质参与各种生理过程,包括调节疼痛。该研究的主要目的是分析这些脂质血清水平与神经病变疼痛研究参与者疼痛之间的关联,这是一项观察性、横断面、多中心研究项目,其中对患有无痛或疼痛性神经病变的糖尿病患者进行了深度表型分析。我们的假设是,与无痛性神经病变相比,疼痛性神经病变与 5 种脂质的水平较高有关。次要目的是分析其他患者报告的结果测量和与脂质水平相关的临床数据。使用液相色谱串联质谱法 (LC-MS/MS) 分析血清样本中的脂质介质。疼痛组的血清 anandamide 水平明显较高,但影响大小较小 (Cohen d = 0.31)。使用脂质数据聚类分析,将患者分为“高水平”内源性大麻素组和“低水平”组。在高水平组中,61% 的患者患有疼痛性神经病变,而低水平组中这一比例为 45% (P = 0.039)。这项工作仅具有相关性,这些发现与寻找针对内源性大麻素系统的止痛药的相关性需要在未来的研究中确定。
几个世纪以来,植物大麻Sativa已用于药物和娱乐目的。它含有500多种化合物,其中大约100种属于大麻素类(1)。在1960年代,分离并表征了主要的精神活性成分( - ) - trans -9-二氢大麻酚(THC)(THC)(2)。在确定THC结构后三十年(3,4)确定了大麻素1(CB 1)和2(CB 2)受体,即THC发挥其特征作用的分子实体。这一发现开始寻找与这些受体结合的内源配体(所谓的内源性大麻素)。n-氨基苯二烯丙基氨基胺(Anandamide或AEA)被发现为第一个内源性大麻素,不久后是2-芳基二烯丙基甘油(2-ag)(5,6),促使他们研究了它们的生物合成,新陈代谢,运输和生理学角色(7)。一起,CB 1/2受体,内源性大麻含量以及负责其生物合成和失活的蛋白质构成内源性大麻素系统(ECS)。在这里,我们简要讨论了医用大麻的潜在治疗和不利影响,并审查了基于对EC的调节而考虑的潜在替代策略,重点是针对靶向脂肪酸酰胺水解酶(FAAH)和单酰甘油甘油脂肪酶(MAGL)的实验药物,酶,酶,无活性内替代(8)(8)(8)。
AEA N-arachidonoylethanolamine or anandamide AP-1 Activator protein 1 BBB Blood-brain barrier BDNF Brain-derived neurotrophic factor cAMP Cyclic adenosine monophosphate CB1 Cannabinoid receptor 1 CB2 Cannabinoid receptor 2 CBD Cannabidiol CBDA Cannabidiolic acid CBG Cannabigerol CBGV Cannabigivarin CNS Central nervous system COX-2 Cyclooxigenase-2 DAGL Diacylglycerol lipase DAMPs Danger associated molecular patterns eCB Endocannabinoid ECS Endocannabinoid system ERK Extracellular signal-regulated kinase FAAH Fatty acid amide hydrolase GFAP Glial fibrillary acidic protein GPCR G protein-coupled receptor HMGB1 High mobility group box 1 HPC Hippocampus Iba1 Ionized calcium binding adaptor molecule 1 IL Interleukin INF-γ Interferon gamma iNOS Inducible nitric oxide synthase IκBα Inhibitory kappa Bα LPS Lipopolysaccharide MAGL Monoacylglycerol lipase MCP-1 Monocyte chemoattractant protein 1 MCSF Macrophage刺激因子MD2粒细胞分化蛋白-2 MHCII主要组织相容性复杂II MIP-1α巨噬细胞炎症蛋白1αmiRNA MicroRNA MRNA MIRNA MRF-1小胶质细胞反应因子1 MyD88髓样分化因子88与2个相关因子2 NF-κB核因子-kappa b oeA乙醇酰胺
摘要自然奖励行为,例如性行为,激活了中唇电路(MSL)多巴胺能。 div>重复性交,直到饱腹感导致长期性抑制时期出现并伴随着普遍的药物超敏反应。 div>另一方面, MSL调节男性性行为的表达,反过来又受内源性大麻素系统(ECB)调节。 div>在这项工作中,在诱导性抑制和对男性大鼠的8-OH-DPAT的性抑制现象中探索了欧洲央行系统参与性忍受模型中的8-OH-DPAT的现象,以及受体参与2型大麻素(CB2R)(CB2R)在ec的动作中,对雄性饱受感性模型的参与。 div>还评估了 NACC施用外源性anandamide对性满足大鼠行为的影响。 div>结果表明,在与饱腹感期间,伏隔核中ECB释放了,这有助于通过激活1型大麻素(CB1R)激活受体对药物的高敏性诱导,但不能诱导长期性抑制作用。 div>cb2r参与性满足性满足性满足的大鼠的维持,但没有归纳。 div>NACC中AEA的外源给药逆转了对性满足男性的性抑制。 div>在这种效果中,AEA显示出双相曲线。 div>得出的结论是,ECB与在MSL中发生的性饱腹感相关的行为涉及NACC,并且CB1R和CB2R都参与了NACC。 div>
上级法院的当前。本文旨在丰富对药用大麻的理解,鼓励在医疗形成中引入主题。方法论:在填充包含标准中,发现了32篇文章的Medline/PubMed和Scielo数据库中的文学评论。结果:最著名的内丙替诺碱是Anandamide(N-Araquidonoil乙醇胺)和2-Araquidonoil甘油(2-AG),这些是通过膜酸和DHA(源自Omegas 3和6)的需求中的膜磷脂生产的。作用于内型抗蛋白系统的主要酶是NAP-PLD,N-ACIL PHOSPASTIDILEMANOLINE,磷脂酶D,FAAH,DGLA和DGLβ,MAGL,ABHD,ABHD和ABHD12。SEC涉及的主要受体为:CB1和CB2。我们看到,许多疾病和疾病都通过使用大麻二酚(例如焦虑和睡眠障碍)来控制,此外,我们还可以提及癫痫治疗的空间。通过各种方式急性或长期给药大麻二酚不会导致变化或导致损失作为重大毒性作用或在神经检查中引起任何变化。研究表明,帕金森氏病患者的治疗和行为中的大麻反应呈阳性,并且也有足够的证据表明在运动障碍以及非运动症状的患者中使用大麻衍生物。医疗专业人员应始终意识到治疗和使用大麻的迹象的新进展。结论:工作在当前立法的概念中表达了法律,以及针对医学目的的关于大麻二酚的讨论的当前法院的理解。因此,与《医学伦理守则》有关的哲学从医疗职责中带来了批判性的反映,这将是对辩论充实的技术支持,为这些专业人员的未来做好了综合医疗保健的准备。关键字:大麻二酚,疾病,立法,生理学,医学伦理守则,医学教育。摘要简介:大麻具有一百多个化学成分,包括Delta-9-四氢大麻酚(THC)和大麻二酚(CBD)。这些物质揭示了各种各样的生物学作用,为治疗医疗状况打开了门。尽管许多国家的进步使大麻的医学使用合法化,但巴西FAC是复杂的法律景观。大麻素的治疗特性,其基本的作用机制和所涉及的法律含义将得到解决。从法律的角度来看,我们将提出立法范围和对高等法院的当前理解。本文旨在通过鼓励在医学培训中引入该主题来丰富有关医用大麻的知名度。方法论:Medline/PubMed和Scielo数据库中的文学综述,其中38篇文章被包括在内,因为它们符合纳入标准。作用于内源性大麻素系统的主要酶是NAP-PLD,N-酰基磷脂乙醇胺,磷脂酶D,FAAH,DGLA和DGLβ,MAGL,ABHD和ABHD12。结果:最著名的内源性大麻素是anandamide(n-蛛网膜乙醇胺)和2-芳基二酮甘油(2-AG),它们是通过膜磷脂的磷脂生产的。SEC涉及的主要接收器是CB1和CB2。我们看到,许多疾病和疾病通过使用大麻二酚作为焦虑和睡眠障碍而受到控制,而且我们可以提及癫痫治疗的空间。通过多种途径急性或长期给药大麻二酚不会导致改变或损害作为显着毒性作用或在神经检查中引起某些改变。研究表明,大麻在帕金森氏症患者的治疗和行为中的正面反应
大麻素,δ9-四氢大麻酚(THC)和大麻二醇(CBD)是源自大麻植物的植物大麻素(Andre等,2016; Elmes等,2015)。虽然THC是大麻的精神活性组成部分,但CBD是非精神活性的,并且已广泛研究其潜在的治疗益处(Scuderi等,2009)。这些化合物与人类中的内源性大麻素系统相互作用,在调节各种生理过程中起着至关重要的作用,包括疼痛感觉,免疫反应和神经保护作用(Lowe等,2021)。该系统是常见的G蛋白偶联受体。大麻素受体(CBR1和CBR2);以及导致大麻素合成和降解的内源性配体和酶的范围,强调了其在神经药理学中的复杂性和明显性(Keimpmema等,2014; Lu and Mackie,2021)。内源性大麻素系统不限于其两个主要的G蛋白偶联受体CBR1和CBR2。它还包括一个内源性大麻素的网络,例如anandamide和2-蛛网膜烯丙基甘油,以及脂肪酸酰胺水解酶(FAAH)和单酰甘油甘油脂肪酶(MAGL)等酶,它们合成并脱落了这些内核素。这些成分对于调节各种生理过程至关重要(Kilaru和Chapman,2020)。重要的是,大麻素与内源性大麻素系统相互作用,以调节神经传递和神经蛋白的膨胀,神经性疼痛发育和持续性的中心机制(Guindon和Hohmann,2009a; Woodhams et al。,2015)。临床试验显示了降低通过与神经系统中的CBR结合,这些化合物可以抑制神经递质和疼痛信号通路的释放,从而在以慢性疼痛和超痛性为特征的条件下提供潜在的缓解(Finn等,2021; Mlost等,2019a)。这种相互作用还表明在神经保护和神经塑性中起着更广泛的作用,这可能是其在神经性疾病中的治疗益处的基础(Xu和Chen,2015年)。cbr1主要在大脑中发现,并参与调节神经递质释放(Busquets-Garcia等,2018),而CBR2主要在免疫细胞和外围组织中表达,它们调节了障碍过程(Turcotte等人,2016年)。内源性大麻素系统提出了针对神经系统疾病的治疗干预措施的潜力,其中涉及内源性大麻素系统的失调。大麻素的潜在治疗应用延伸到一系列神经系统疾病中,包括神经退行性疾病,例如阿尔茨海默氏病(Benito等,2007),帕金森氏病(Di Filippo等人,2008年),以及亨廷顿病(Pazos et al。,2008年),以及MSORPERS,MSORTE(MS) 2018),癫痫(Kwan Cheung等,2019)和神经病等慢性疼痛状况(Maldonado等,2016)。随着这些疾病的越来越多的患病率和现有治疗方法的有限效率(Feigin等,2020),作为新型治疗剂的探索大麻素的探索加速了。临床试验在评估大麻素在治疗这些神经系统疾病中的安全性,效率和作用机制中起着至关重要的作用。大麻素,尤其是THC和CBD,因其管理MS患者的痉挛,神经性疼痛和膀胱功能障碍的能力而受到探索(Baker等,2000; Fontelles andGarcía,2008; Zajicek and Apostu,2011)。sativex是一种包含THC和CBD的眼核喷雾剂,已在多个国家批准用于治疗MS的痉挛(Giacoppo等,2017)。