“IFF”或“雷达,信标”不适用,地面控制拦截(GCI):见“搜索,地面”或“搜索,空中”和“测高”。 指导:一个通用术语,仅在无人驾驶载体上发送信号到无人驾驶载体时使用,该术语指的是指导和调节无人驾驶载体上的设备,
本出版物是六份目录之一,旨在以易于访问的形式收集有关所有类型军用天线的数据。 这种收集的想法源自军用天线间小组(更好地称为第 5 卷 - 机密地面、舰船和空中天线组)。 ISAG 是一个由空军、陆军和海军实验室组成的非正式团体,他们定期开会讨论相互的天线问题。 除了打算用于导弹的那些之外,该小组的认可资金由空军和陆军拨出,这项工作在空军管理下以合同 AF 19(604)-4101 的形式启动。
本出版物是六份目录之一,旨在以易于访问的形式收集有关所有类型军用天线的数据。 这种收集的想法源自军用天线间小组(更好地称为第 5 卷 - 机密地面、舰船和空中天线组)。 ISAG 是一个由空军、陆军和海军实验室组成的非正式团体,他们定期开会讨论相互的天线问题。 除了打算用于导弹的那些之外,该小组的认可资金由空军和陆军拨出,这项工作在空军管理下以合同 AF 19(604)-4101 的形式启动。
摘要天线技术通过利用信号处理算法,在蜂窝网络中提高光谱效率,安全性,能源效率和整体服务质量,这些算法在为干涉剂生成零的同时为用户提供辐射光束。在本文中,比较了用于形成用于形成智能天线束的光束的ML SO诸如支撑矢量机(SVM)算法,人工神经网络(ANN),集合算法(EA)和决策树(DT)算法等ML SO的性能。考虑了由10个半波偶极子组成的智能天线阵列。ANN方法比剩余的方法在实现光束和空方向方面的效果相比,而EA在降低侧叶级别(SLL)方面提供了更好的性能。使用EA用于所有用户方向可实现最大SLL。在形成智能天线的光束方面,ANN算法的表现与可变的速度尺寸自适应算法相比。
摘要。本文提出了一种基于深的神经网络(DNN)的方法,用于8个元素分阶段阵列天线的辐射模式合成。为此,将所需辐射模式的181点作为输入到DNN和阵列元素的相位作为输出提取。现有的辐射模式合成技术的DNN技术并不直接适用于数据集大小随数组尺寸呈指数增长时。为了过度使用这个瓶颈,我们提出了为DNN生成数据集的新颖有效的方法。具体而言,通过杠杆,分阶段阵列天线的恒定相移特性,数据集大小减少了几个数量级,并独立于阵列大小。这在速度和复杂性方面具有相当大的优势,尤其是在实时应用中,因为DNN可以立即学习和综合所需的模式。通过使用理想的方形梁和最佳阵列模式作为DNN的参考输入来验证所提出方法的实现。MATLAB和CST中产生的结果证明了所提出的方法在合成所需的辐射模式中的有效性。
薄膜天线技术是一种非常有前途的实现大口径、轻质量、小收纳体积的方法。在过去的几十年中,有源和无源薄膜天线得到了广泛的研究,但由于面形精度保持、在轨可靠性、环境兼容性等诸多挑战,其实际星载应用很少。本文总结了星载薄膜天线的历史和最新进展,分别介绍了曲面反射器、共形有源薄膜天线、平面阵列薄膜天线和平面反射阵列薄膜天线。介绍了射频设计、展开机理、材料、实验、应用和分析方法。通过总结现有薄膜天线的优势和挑战,本文旨在展望星载薄膜天线存在的问题和未来发展趋势。
摘要。分形天线已经并将继续受到未来无线通信的关注。这是因为它们具有宽频和多频带功能、分形几何结构驱动多个谐振的机会,以及能够制造更小更轻、元件更少、辐射元件增益更高的天线。由石墨烯制成的小尺寸(即微米和纳米级)和超高频(太赫兹或 THz 范围)分形天线有可能以前所未有的数据速率(即每秒约 10 12 比特)增强无线通信。分形石墨烯天线是一种用于 THz 频谱无线电通信的高频可调天线,可实现无线纳米网络等独特应用。这是因为(单层)石墨烯是碳的一个原子厚的二维同素异形体,具有已知的最高电导率,目前任何其他材料(包括金和银等金属)都无法提供这种电导率。因此,将石墨烯的特性与微米和纳米级分形的自近似特性相结合,有可能彻底改变通信,至少在近场(几米的数量级)低功耗系统。在本文中,我们考虑了与这种颠覆性新技术的开发相关的基本物理和一些主要数学模型,以便为那些从事当前和未来研究的人提供指导,分形石墨烯天线就是用于高要求应用的先进材料的一个例子。这包括一些由石墨烯组成的分形贴片天线产生的 THz 场模式的示例模拟,根据“Drude”模型,其电导率与频率的倒数成比例。还探索了使用石墨烯生成 THz 源的方法,该方法基于红外激光泵浦以感应 THz 光电流。
本出版物是六份目录之一,旨在以易于访问的形式收集有关所有类型军用天线的数据。 这种收集的想法源自军用天线间小组(更好地称为第 5 卷 - 机密地面、舰船和空中天线组)。 ISAG 是一个由空军、陆军和海军实验室组成的非正式团体,他们定期开会讨论相互的天线问题。 除了打算用于导弹的那些之外,该小组的认可资金由空军和陆军拨出,这项工作在空军管理下以合同 AF 19(604)-4101 的形式启动。
要达到透明的天线,有必要使用具有高电导率(≥106 s/m)的材料,并且在可见范围内(400-800 nm),具有良好的透射率或光学透明度(≥70%)。称为透明的导电材料(TCM),这些是不吸收可见光的固体(间隙大于3 eV)。可以区分材料,透明的导电氧化物(OTC),多层,纳米线,石墨烯,金属网络可以区分[1]。它们以三个主要量的特征:正方形的电阻,光学透明度t和功绩FMO的图。目前在该领域存在许多作品,因为它们的各种应用:光伏面板,平面屏幕,低发射玻璃,pare-brises,pare-brises,antistatic和/或anti div屏幕等的透明电极等。这篇综述的目的是找到具有最佳的电气和光学特性的最佳透明导电材料,以实现
1彼得·格伦伯格研究所(PGI 10),福斯申斯特鲁姆·尤里奇(ForschungszentrumJülich),威廉 - 约翰·斯特拉斯(Wilhelm-Johnen-Straße),尤里奇(Jülich)52425,德国2 IHP - 莱布尼兹(Leibniz) - 莱布尼兹(Leibniz ElmshöherAllee 71,Kassel 34121,德国4分校技术研究所(IHT),Stuttgart,Pfaffenwaldring 47,Stuttgart 70569,德国5伊布尼兹水晶增长研究所,麦克斯 - 斯特拉斯2,柏林12489,德国7 Dipartimento di Scienze,Universit`roma tre,Viale G. Marconi 446, I-00146,罗马,意大利 8 实验物理和功能材料,BTU Cottbus-Senftenberg,Erich-Weinert-Str。 1,03046,科特布斯,德国