Paul Zamechnik和Mary Stephenson在1978年首次在Rous肉瘤病毒上发现了使用修饰的反义寡核苷酸的部分可能性(Zamecnik和Stephenson,1978年)。一年后,当海伦·唐尼斯·凯勒(Helen Donis-Keller)提出的结果表明,RNase H在RNA中切割RNA - DNA异质振动台时的结果(Donis-Keller,1979年)。花了三十年的时间才以未修饰的反义寡核苷酸的形式以未修饰的反义DNA(CUAD)生物技术(Oberemok,2008)和寡核苷酸杀虫剂(Brie -off y,Olinscides或DNA昆虫剂使用植物保护剂)(MAN 22)(MAN 2)(MAN)(MAN)(han)(han)(han)(oligonucletide)(Oberemok,2008年)(Oberememok,2008)(Oberemok,2008年),以概念上的形式应用了三十年的时间。 Gal'chinsky等人,2024年; Trilink Biotechnologies,2024)(图1)。在2008年,在未修饰的反义DNA寡核苷酸和接触杀虫剂之间放置了一个相等的迹象(Oberemok,2008)。到那时,磷氧矿体DNA合成的发展(Hoose等,2023)使得以负担得起的价格在大量害虫上合成和测试反义DNA碎片。寡核苷酸杀虫剂在海绵状的蛾lymantria dispar进行了第一次测试。靶向IAP基因的反义DNA寡核苷酸的接触应用在无杆状病毒和LDMNPV感染的海绵状蛾毛虫(Oberemok等,2016,2017; Kumar等,2022)上表现出了其有效性。在2019年,发生了三个重要的变化,这些变化显着推动了Cuad Biotechnology的发展。第二,寡核苷酸杀虫剂的长度成功降低至11首先,虫害的rRNA开始用作寡核苷酸杀虫剂的靶标(这导致寡核苷酸杀虫剂的效率提高,因为RRNA占细胞中所有RNA的80%,因此)(Oberemok等)(Oberemok等)(Oberemok等)。
摘要:本综述集中于反义和功能性核酸,用于完全合理的药物设计和药物靶标评估,旨在减少时间和金钱,并增加成功的药物开发率。核酸具有独特的特性,可以在药物发育中作为药物靶标和药物发挥两个重要作用。药物靶标可以是信使,核糖体,非编码RNA,核酶,核糖开关和其他RNA。此外,各种反义和功能性核酸可能是药物发现中的宝贵工具。在亲核和工程方法中基于RNA的基因表达控制基因表达的许多机制开放了具有关键作用的药物发现的新途径。本综述讨论了在药物输送和设计中反义和功能性核酸的设计原理,应用和前景。这种核酸包括反义寡核苷酸,合成核酶和siRNA,可用于有效的有效抗菌药物开发。反义和功能性核酸的重要特征是使用有理设计方法进行药物开发。本评论旨在普及这些新颖的方法,以使制药业和患者受益。
1。eb moloney和al。Neurosci Front。2014; 8:252。 2。 我的M. Neurobiol Dis 2013; 60:61-79。 3。 asakawa k和al。 SCI生活掉了。 2021; 78(10):4453-4465。 4。 Wang Y和Al。 单元格 2020; 9(12):2698。 5。 Metwally E和Al。 前兽医科学 2023 9月5日; 10:10:12014; 8:252。2。我的M. Neurobiol Dis2013; 60:61-79。 3。 asakawa k和al。 SCI生活掉了。 2021; 78(10):4453-4465。 4。 Wang Y和Al。 单元格 2020; 9(12):2698。 5。 Metwally E和Al。 前兽医科学 2023 9月5日; 10:10:12013; 60:61-79。3。asakawa k和al。SCI生活掉了。2021; 78(10):4453-4465。4。Wang Y和Al。 单元格 2020; 9(12):2698。 5。 Metwally E和Al。 前兽医科学 2023 9月5日; 10:10:1Wang Y和Al。单元格2020; 9(12):2698。5。Metwally E和Al。前兽医科学2023 9月5日; 10:10:1
骨关节炎(OA)是一种使人衰弱的疾病,没有批准的疾病改良疗法。在开发治疗的challenges中正在实现针对受影响关节的靶向药物。这导致了几个候选药物治疗OA的失败。在过去20年中,在反义寡核苷酸(ASO)技术中取得了重大进展,以实现在体外和体内靶向递送到组织和细胞的靶向递送。由于ASO能够结合特定的基因区域并调节蛋白质翻译,因此它们可用于纠正与某些疾病相关的异常内源机制。ASO可以通过关节内注射在本地传递,并可以通过天然的细胞摄取机制进入细胞。尽管如此,ASO尚未在OA治疗的临床试验中成功测试。最近对ASO的化学方法进一步改善了细胞摄取和降低的毒性。是基于锁定的核酸(LNA)的ASO,在肝炎和血脂异常等疾病的临床试验中显示出令人鼓舞的结果。最近,基于LNA的ASO在体外和体内都经过了OA的治疗性测试,并且有些在临床前OA动物模型中显示出有希望的联合保护作用。为了加速OA临床试验环境中ASO疗法的测试,需要进一步研究递送机制。在本评论文章中,我们讨论了目前正在临床前测试中的病毒,粒子,生物材料和化学修饰的疗法的机会。我们还解决了基于ASO的OA治疗疗法的临床翻译中的潜在障碍,例如与OA动物模型相关的局限性以及药物毒性的挑战。总的来说,我们回顾了已知的内容以及加速基于ASO的OA治疗疗法的翻译。
对生物机制的理解使得开发第一种靶向疗法成为可能。这些疗法最初针对的是导致疾病或与疾病特别相关的蛋白质。对 ER 在乳腺癌中的作用的理解以及对其阻断机制的识别推动了针对所谓“激素依赖性”乳腺癌(ER 阳性、雌激素受体阳性)的激素疗法的开发。他莫昔芬现在是 ER 阳性乳腺癌的标准治疗方法。它通过竞争性抑制雌二醇与其受体的结合起作用(Jordan,2003 年)。针对特定表位的单克隆抗体也构成了一类非常重要的靶向疗法。它们彻底改变了哮喘等炎症性疾病的治疗(Pelaia 等人,2017 年)。然而,对导致疾病的基因变异的识别为使用靶向疗法提供了主要动力。例如,相互易位t(9; 22),即费城染色体,是慢性粒细胞白血病 (CML) 的标志。因此,t(9;22) 易位最先用于确诊 CML (Heisterkamp 等,1990 年;Rowley,1973 年)。这种易位会产生异常的融合基因 (BCR-ABL)。由此产生的 BCR-ABL 融合蛋白由于其组成性酪氨酸激酶活性而具有致癌特性 (Lugo、Pendergast、Muller 和 Witte,1990 年)。与蛋白激酶催化位点结合的 ATP 竞争性抑制剂的开发导致了一种特异性疗法:伊马替尼或 Gleevec ®,从而彻底改变了 CML 和其他疾病的治疗方式 (Kantarjian 和 Talpaz,2001 年)。同样,致癌 NTRK(神经营养性原肌球蛋白相关激酶)融合基因的鉴定最近导致了特异性抑制剂(larotrectinib 或 Vitrakvi ®、entrectinib 或 Rozlytrek ®)的开发,用于治疗成人和儿童的 NTRK 阳性癌症(Cocco、Scaltriti & Drilon,2018 年)。在肿瘤学中,针对复发性点突变的特异性抑制剂也得到了广泛开发(Martini、Vecchione、Siena、Tejpar & Bardelli,2012 年;Skoulidis & Heymach,2019 年)。在某些情况下,会产生很少或根本不产生蛋白质。胰岛素就是这种情况,胰岛素依赖型糖尿病(I 型)患者缺乏这种酶。患者接受胰岛素疗法治疗,通过施用替代蛋白质来忠实重现胰岛素生理分泌的效果。 1982 年,第一种人类胰岛素蛋白上市,开创了一种新模式:可以修改激素蛋白的序列,使其药代动力学特性与患者的生理需求相匹配(McCall & Farhy,2013 年)。除了这些“蛋白质特异性”疗法外,还开发了针对 DNA(脱氧核糖核酸)的方法。至于蛋白质,最初的治疗尝试是基于对 DNA 的整体改变,例如通过使用烷化剂。这些药物会诱导非特异性共价键的产生,从而产生 DNA 加合物。它们会破坏复制和转录,这解释了它们在癌症治疗中的用途(Noll、Mason 和 Miller,2006 年)。插入也是小平面分子与 DNA 的一种特殊结合模式。它们会改变 DNA 的构象,破坏 DNA 和 RNA 聚合酶的活性(Binaschi、Zunino 和 Capranico,1995 年)。靶向 DNA 的分子并不局限于肿瘤学应用。例如,甲氨蝶呤是一种在细胞周期 S 期抑制核酸合成的抗代谢物,它已经取代了传统上使用的银盐用于治疗类风湿性关节炎(Browning、Rice、Lee 和 Baker,1947 年)。除了这些以非特异性方式与 DNA 相互作用的分子之外,人们还设想了针对性策略,以纠正导致疾病的有害基因。这种方法被称为基因疗法(Kaufmann、Büning、Galy、Schambach 和 Grez,2013 年)。一个非常有前景的例子(正在申请上市许可 [MA])涉及治疗 β 地中海贫血症,这是一种血红蛋白遗传性疾病。在这里,患者的干细胞被分离并被改造以替换有害基因,这样它们就可以产生正常的血红蛋白。然后将改造后的细胞注射回患者体内(Cavazzana-Calvo 等人,2010 年;Thompson 等人,2018 年)。这些令人惊叹的方法可以用于治疗许多疾病,包括糖尿病,尽管它们的实施非常复杂。最后,长期以来被认为是简单中间分子的 mRNA 最近已成为感兴趣的治疗靶点。 mRNA 是精细转录和转录后调控的位点,与许多疾病有关。因此,近年来 RNA 分子也受到关注,因为这些分子与蛋白质和 DNA 一样,是开发靶向疗法的候选分子(Disney、Dwyer 和 Childs-Dis-ney,2018 年)。第一种反义寡核苷酸 (ASO) 就是在这种背景下出现的。ASO 是单链合成 RNA 或 DNA 分子,平均长度为 12 至 25 个核苷酸。它们的序列与其靶标的序列互补,以确保特异性。因此,ASO 的序列由其靶标的序列决定。此外,这些分子可以定位在细胞质和细胞核中,从而可以到达细胞质和/或细胞核靶标(参见 Potaczek、Garn、Unger 和 Renz,2016 年的综述)。 ASO 经过化学改性,免受核酸酶的作用(否则会降解它们),并允许它们穿过质膜而无需矢量化。根据这些变化,ASO 可分为三代(如下所述)(图 1)。ASO 的化学性质很重要,因为它决定了其作用方式(降解目标 RNA 或掩盖位点而不降解)。因此,ASO 可以进行广泛的调节,
三天线 N-乙酰半乳糖胺 (GalNAc 3 ) 簇已证明受体介导的配体结合反义药物摄取的效用,这些药物靶向肝细胞表达的 RNA。GalNAc 3 结合的 2 ¢ - O - 甲氧乙基 (2 ¢ MOE) 修饰的反义寡核苷酸 (ASO) 已证明比未结合形式具有更高的效力,以支持较低剂量获得相同的药理作用。我们利用 Ionis 集成安全数据库比较了四种 GalNAc 3 结合和四种相同序列未结合的 2 ¢ MOE ASO。该评估评估了来自八项随机安慰剂对照剂量范围 1 期研究的数据,涉及 195 名健康志愿者(79 名 GalNAc 3 ASO,24 名安慰剂;71 名 ASO,21 名安慰剂)。两组 ASO 临床实验室测试中未发现异常阈值发生率的安全性信号。但是,与安慰剂相比,未结合 2 ¢ MOE ASO 组高剂量范围内的平均丙氨酸转氨酶水平显著升高。与未结合 ASO 组相比,GalNAc 3 -结合 ASO 组导致局部皮肤反应的皮下注射平均百分比低 30 倍(0.9% vs. 28.6%),未发生流感样反应(0.0% vs. 0.7%)。未结合 ASO 组中的三名受试者(4.2%)停止服药。在健康志愿者的短期临床数据比较中,GalNAc 3 -结合 2 ¢ MOE ASO 的整体安全性和耐受性特征明显改善。
此预印本的版权所有者于 2024 年 8 月 30 日发布此版本。;https://doi.org/10.1101/2024.08.28.24312624 doi: medRxiv preprint
增强子产生双向非编码增强子RNA(ERNAS),可能调节基因表达。目前,ERNA函数仍然神秘。在这里,我们报告了一个5'上限的反义ERNA珍珠(与R-Loop组相关的PCDH ERNA),该珍珠从原始粘蛋白(PCDH)αHS5-1增强子区域转录。通过CRISPR/CAS9 DNA碎片编辑,CRISPRI和CRISPRA和CRISPRA以及锁定的核酸策略以及CHIRP,MEDIP,DRIP,QHR-4C和HICHIP实验,我们建立了PCDH lo loble(pcdh loble),通过CRISPR/CAS9 DNA碎片编辑,CRISPRI和CRISPRA以及锁定的核酸策略。在HS5-1增强子区域内,以促进远端增强子和靶启动子之间的长距离染色质相互作用。 尤其是,通过扰动转录伸长因子SPT6的ERNA珍珠水平升高导致PCDH Supertad内的局部三维染色质组织增强。 这些发现对分子机制具有重要的影响,HS5-1增强子可以调节大脑单个细胞中随机PCDHα启动子选择。通过CRISPR/CAS9 DNA碎片编辑,CRISPRI和CRISPRA以及锁定的核酸策略。在HS5-1增强子区域内,以促进远端增强子和靶启动子之间的长距离染色质相互作用。尤其是,通过扰动转录伸长因子SPT6的ERNA珍珠水平升高导致PCDH Supertad内的局部三维染色质组织增强。这些发现对分子机制具有重要的影响,HS5-1增强子可以调节大脑单个细胞中随机PCDHα启动子选择。
Chappell 2 、Kylie s Chew 1 、Johann Clemens 1 、Clairre B Discenza 1 、Jason Dugas 1 、TIMOTHY EARR 1 、Connie Ha 1 、Michelle Pizzo 1 、Elysia Roche 1 、Laura Sanders 1 、Alexander stergioulis 1# 、Hai Tran 1** 、Joy Zuchero 1 、Ryan J Watts 1 、Thomas Sandmann 1 、Leley Kane 1 、Frank
1 西班牙马德里康普顿斯大学化学学院物理化学系,2 西班牙马德里十月十二日医院健康研究所 (Imas12),3 德国比勒费尔德大学物理和生物物理化学系,药理学系,4 西班牙马德里康普顿斯大学医学院,5 精神健康网络生物医学研究中心 (CIBERSAM) ISCIII。马德里,马德里,西班牙,6 康普顿斯大学化学学院有机化学系,马德里,西班牙,7 巴塞罗那生物医学研究所,西班牙国家研究委员会 (CSIC) 08036 巴塞罗那,巴塞罗那,西班牙,8 调查研究所 (生物多样性生物医学科学研究所),西班牙,9 弗朗西斯科·维多利亚大学生物卫生研究所,马德里,西班牙