深脑刺激(DBS)是针对众多神经系统疾病的患者的一种治疗方法,包括帕金森氏病[1-4],必需震颤[5-7]和肌张力障碍[8-11] [8-11],药物治疗不足。护理标准目前以连续的方式提供DBS,而无需自动反馈以根据不断变化的运动标志调整治疗。最近的工作集中在自适应DBS(ADB)的发展上,在这种发展中,刺激是针对患者临床状态的生物标志物进行调节的[12]。神经生理生物标志物,例如从DBS铅记录的局部局部场电位(LFP)的信号特性,经常被提议作为ADBS系统的反馈信号[13,14]。例如,从丘脑下核(STN)记录的β范围(13-30 Hz)振荡与帕金森氏病的症状相关[13],并且成功实施了β波段功率作为基于实验室的ADB实施的控制信号[15-17]。在宫颈肌张力障碍中使用较低的频带(4-12 Hz)在宫颈肌张力障碍(GP)[18]中试用了类似的范例。因此,使用皮质下LFP生物标志物成功应用ADB是依赖于神经信号的准确感测,尤其是在感兴趣的频带中。
深部脑刺激 (DBS) 是一种治疗多种神经系统疾病的方法,包括帕金森病 [1–4]、特发性震颤 [5–7] 和肌张力障碍 [8–11],对于这些疾病,药物治疗效果不佳。目前,标准治疗以连续的方式提供 DBS,没有自动反馈来根据不断变化的运动体征调整治疗。最近的研究集中于开发自适应 DBS (aDBS),其中刺激根据患者临床状态的生物标志物进行调节 [12]。神经生理生物标志物,例如从 DBS 导线本身记录的皮层下局部场电位 (LFP) 的信号特性,经常被提议作为 aDBS 系统的反馈信号 [13,14]。例如,从丘脑底核 (STN) 记录的β 波段 (13-30 Hz) 振荡与帕金森病症状相关 [13],β 波段功率已成功用作实验室实施 aDBS 的控制信号 [15–17]。使用从苍白球 (GP) 记录的较低频带 (4-12 Hz) 在颈部肌张力障碍中试验了类似的范例 [18]。因此,使用皮层下 LFP 生物标志物成功应用 aDBS 依赖于对神经信号的准确感知,特别是在感兴趣的频带内。
1. Mulert, C.、Pogarell, O. 和 Hegerl, U. 同步 EEG-fMRI:精神病学展望。CEN, 39(2),61–64 (2008)。https://doi.org/10.1177/155005940803900207 2. Shams, N.、Alain, C. 和 Strother, S. 同步 EEG–fMRI 中诱发反应的 BCG 伪影去除方法比较。J. Neurosci. Methods 245, 137–146 (2015) 3. Iannotti GR、Pittau F.、Michel CM、Vulliemoz S. 和 Grouiller F. 基于 EEG 地图拓扑在同步 EEG-fMRI 记录中进行脉冲伪影检测。脑拓扑; 28(1):21-32 (2015) 4. Allen, PJ, Polizzi, G., Krakow, K., Fish, DR 和 Lemieux, L. Identification of EEG events in the MR scanner: the problem of pulse pseudodragon and a method for its subtraction. Neuroimage 8(3), 229–239 (1998) 5. C. Bénar, Y. Aghakhani, Y. Wang 等,Quality of EEG insynchronous EEG–fMRI for epilepsy,Clin. Neurophysiol. 114 (3), 569–580 (2003) 6. K. Niazy, CF Beckmann, GD Iannetti 等, 使用最优基础集从 EEG 数据中去除 FMRI 环境伪影, Neuroimage 28 (3), 720–737 (2005) 7. Kruggel F, Wiggins CJ, Herrmann CS 等, 在 3.0 Tesla 场强下功能性 MRI 期间记录事件相关电位。Magn Reson Med, 44(2): 277-282 (2000) 8. Niazy, RK, Beckmann, CF, Iannetti, GD, Brady, JM 和 Smith, SM, 使用最优基础集从 EEG 数据中去除 FMRI 环境伪影。 Neuroimage 28(3), 720–737 (2005) 9. Li Hu, Zhiguo Zhang: EEG 信号处理和特征提取。Springer Nature (2019) 10. Ibrahim Sadek, Jit Biswas, Bessam Abdulrazak。心冲击信号处理:综述。健康
摘要 — 在癫痫监测中,由于脑电图伪影在幅度和频率上具有形态相似性,因此经常被误认为是癫痫发作,这使得癫痫发作检测系统容易受到更高的误报率的影响。在这项工作中,我们介绍了一种基于并行超低功耗 (PULP) 嵌入式平台上最少数量的脑电图通道的伪影检测算法的实现。分析基于 TUH 脑电图伪影语料库数据集,并重点关注颞电极。首先,我们使用自动机器学习框架在频域中提取最佳特征模型,在 4 个颞脑电图通道设置下实现了 93.95% 的准确率和 0.838 F1 得分。所实现的准确率水平比最先进的水平高出近 20%。然后,这些算法针对 PULP 平台进行并行化和优化,与最先进的低功耗伪影检测框架实现相比,能效提高了 5.21 倍。将此模型与低功耗癫痫发作检测算法相结合,可以在可穿戴外形尺寸和功率预算下使用 300 mAh 电池进行 300 小时的连续监测。这些结果为实现经济实惠、可穿戴、长期癫痫监测解决方案铺平了道路,该解决方案具有低假阳性率和高灵敏度,可满足患者和护理人员的要求。临床意义——所提出的 EEG 伪影检测框架可用于可穿戴 EEG 记录设备,结合基于 EEG 的癫痫发作检测算法,以提高癫痫发作检测场景的稳健性。索引词——医疗保健、时间序列分类、智能边缘计算、机器学习、深度学习
通过脑皮层电图 (ECoG) 进行皮层刺激可能是在双向脑机接口 (BD-BCI) 中诱导人工感觉的有效方法。然而,电刺激引起的强电伪影可能会显著降低或掩盖神经信息。详细了解刺激伪影通过相关组织的传播可能会改进现有的伪影抑制技术或启发开发新的伪影缓解策略。因此,我们的工作旨在全面描述和模拟硬膜下 ECoG 刺激中伪影的传播。为此,我们收集并分析了四名患有癫痫并植入硬膜下 ECoG 电极的受试者的雄辩皮层映射程序数据。从这些数据中,我们观察到伪影在所有受试者的时间域中都表现出锁相和棘轮特性。在频域中,刺激导致宽带功率增加,以及基频刺激频率及其超谐波的功率爆发。伪影的空间分布遵循电偶极子的电位分布,在所有受试者和刺激通道中,拟合优度中值为 R 2 = 0.80。高达 ± 1,100 µ V 的伪影出现在距离刺激通道 4.43 至 38.34 毫米的任何地方。这些时间、光谱和空间特性可用于改进现有的伪影抑制技术,启发新的伪影缓解策略,并有助于开发新的皮质刺激方案。总之,这些发现加深了我们对皮质电刺激的理解,并为未来的 BD-BCI 系统提供了关键的设计规范。
摘要:本文旨在全面研究脑机接口及其产生的更多科学发现。本综述的最终目标是对 BCI 系统进行广泛的研究,同时关注最近在 BCI 中使用的伪影去除技术或方法以及 BCI 的重要方面。在预处理中,伪影去除方法至关重要。此外,本综述强调了与 BCI 进步相关的适用性、实际挑战和成果。这有可能加速该领域的未来进步。这项关键评估考察了 BCI 技术的现状以及最近的进展。它还确定了各种 BCI 技术应用领域。这项详细的研究表明,虽然正在取得进展,但用户进步仍面临重大挑战。对 BCI 中的 EEG 伪影去除方法进行了比较,并讨论了它们在现实世界的 EEG-BCI 应用中的实用性。还根据综述结果和现有的伪影去除方法提出了该领域未来研究的一些方向和建议。
2022 年 8 月 13 日 — 关岛有着悠久的历史,可以追溯到几千年前。关岛见证了查莫罗人的祖先在数千年中的生活,以及最近五年的生活。
本文介绍了一种新型的高质量深层检测方法,称为局部伪影注意网(LAA-NET)。现有的高质量深伪检测方法主要基于有监督的二进制分类器与隐式注意机制。因此,它们并不能很好地概括到看不见的射精。为了解决这个问题,做出了两个主要贡献。首先,提出了多任务学习框架内的明确注意机制。通过结合基于热图的和自矛盾的关注策略,LAA-NET被迫专注于一些小伪像易受攻击的区域。第二,提出了一个增强的特征金字塔网络(E-FPN),作为一种简单而有效的机制,用于将歧视性低级特征扩展到最终特征输出中,具有限制冗余的优势。在基准基准上进行的实验表明,在曲线下(AUC)和平均精度(AP)方面,我们方法的优越性。该代码可在https:// github上找到。com/10ring/laa-net。
⦁建立了一个新的FedRamp技术平台,该平台将促进第一个,第一个基金会和云提供商的第一个基础,以从FedRamp发送和接收安全信息。
尽管多年来FNIRS技术得到了改进,但FNIRS数据集的处理仍然是一项艰巨的任务。尤其是,由于Optodes和Scalp之间的耦合变化而导致的运动伪影识别并纠正并纠正了很难且耗时。此类伪影表示为时间序列信号中的峰值或偏移。由于峰或移位的幅度通常比血液动力学反应功能(HRF)高得多,因此FNIRS信号被显着污染,并且不会反映皮质激活。当头部和四肢的运动在实验方案中不可避免甚至需要时,这种现象就会更明显,例如语音,17个步行,18和手术任务。11,12最近,由于可穿戴或无线FNIRS设备(19,20)的升高,该问题加剧了这些设备的移动范围,用于跑步或团队工作,这些设备更容易受到运动文物的影响。因此,消除运动伪影的有效方法对于在这些情况下利用FNIR是必不可少的。多年来开发的一些策略包括在数据处理过程中保留任何具有运动伪像的试验。仅当收集大型数据集并且不是当前的主要实践时才使用。另一种策略是通过视觉检查识别具有运动伪影的试验/通道,或在普遍的FNIRS数据处理工具箱Homer2中使用诸如HMRMotionArtifact功能之类的功能,然后从进一步分析中丢弃它们。为例,参考。35最近的研究36不过,最合适的方法是使用高级时间序列数据处理方法处理这些试验/通道。这些包括样条插值,21小波滤波,22个主成分分析(PCA),23 Kalman滤波,24和基于相关的信号改进(CBSI)。25这些方法的性能在很大程度上取决于一组假设,以描述运动伪影和参数相关调整的主观选择(表1)。29证明,选择PCA参数,即PCA删除27为0.80和0.97的数据中的方差百分比产生了显着不同的结果。因此,高度可取的方法,不需要对参数的主观微调或不依赖严格的假设的方法。在这里,我们提出了一种自动学习噪声特征的深度学习方法。在过去十年中,深度神经网络已成为一种强大的工具,可以快速有效地抑制图像数据集中的噪声。深度学习模型已被证明可以增强竞争性降解结果,同时与召开方法相比,保留了更多纹理细节。30 - 33深度学习网络在应用于医学成像问题时也表现出卓越的性能。例如,denoising自动编码器(DAE)模型可以Denoise乳房X线照片[结构相似性指数量度(SSIM)从0.45到0.73]和Dental X射线数据(SSIM从0.62到0.86)。34 A DAE模型的峰值信噪比(PSNR)和SSIM高10%,而SSIM比胸部辐射图中的常规算法高。