功能性近红外光谱 (fNIRS) 是一种新兴的非侵入式脑机接口 (BCI) 技术。快速获取精确的脑信号对于成功的 BCI 至关重要。本文研究了一种实时滤波技术,以消除 fNIRS 信号中的运动伪影 (MA) 和低频漂移。使用文献中的气球模型和实验范例生成两种波长的光强度。生成两种类型的 MA(尖峰状和阶梯状)和低频漂移,并将其添加到模拟的两种波长的光强度中。提出了一种新的双级中值滤波器 (DSMF) 来恢复未受污染的信号。使用五个评估指标来确定双滤波器的最佳窗口大小:第一个中值滤波器为 4 s 和 9 s,第二个中值滤波器为 18 s。使用相同的指标将所提出的方法与基于小波的 MA 校正方法和样条插值方法进行了比较。结果表明,所提方法在衰减 MA 和信号失真方面优于比较方法。最后,将设计的 DSMF 应用于来自八名健康受试者的实验数据,其中通过要求受试者摇头来引入 MA。所提方法的滤波数据显示信号干净,没有 MA 和低频漂移。
流过周围空间的抽象脑脊液(CSF)是大脑清除代谢废物产物的机制的组成部分。轨迹示踪剂颗粒注射到小鼠大脑的甲壳虫(CM)中的实验表明,在周围的丘疹动脉周围的血管内空间中脉冲CSF流动的证据,其大量流动与血流相同的方向。但是,驾驶机制仍然难以捉摸。几项研究表明,大容量可能是由注射本身驱动的人工制品。在这里,我们通过新的体内实验解决了这一假设,在这些实验中,示踪剂颗粒使用双传感器系统同时注射并撤回等量的流体。此方法不会产生CSF体积的净增加,并且颅内压没有显着增加。然而,粒子跟踪揭示了在各个方面都与单源注射的早期实验中观察到的流相一致的流。
收到2007年9月26日; 2008年2月15日修订; 2008年2月18日接受;发表于2008年3月4日(文档ID 87957);发表于2008年3月31日,我们描述了一种扫描源源式光学相干断层扫描(OCT)系统,该系统启动了高速全速成像。我们实施了一个压电纤维担架,以在连续的A扫描之间产生定期的相移,从而引入了横向调制。然后,通过在轴向方向处理数据之前,在横向方向上执行傅立叶过滤来解决深度歧义。DC工件也被删除。关键因素是压电纤维担架可用于以高重复速率生成离散的相移。提出的实验设置是先前报道的B-M模式扫描光谱域OCT的一个改进版本,因为它不会产生其他伪像。这是一个简单且低成本的解决方案,可轻松应用伪影。©2008美国光学协会OCIS代码:110.4500,170.4500,100.5070。
脑电图(EEG)对于监测和诊断脑疾病至关重要。然而,脑电图信号遭受非脑部伪影引起的扰动,从而限制了其效率。当前的伪影检测管道是渴望资源的,并且严重依赖手工制作的功能。此外,这些管道本质上是决定性的,使它们无法捕获预测性不确定性。我们提出了E 4 g,这是一个高频脑电图检测的深度学习框架。我们的框架利用了早期出口范式,建立了能够捕获不确定性的模型的隐性集合。我们将对坦普尔大学的脑电图施工(v2.0)进行评估,以实现现状的分类结果。此外,E 4 g提供了良好的不确定性指标,可与采样技术相吻合,例如仅在一次前传球中蒙特卡洛辍学。e 4 g为支持临床医生在环框架中的不确定性感知人工检测打开了大门。
神经假体系统包括神经/肌肉刺激器和神经记录电路。该系统中的这些刺激器和记录器几十年来广泛应用于许多医学领域,如人工耳蜗/视网膜假体、细胞激活和心脏起搏器[1–5]。功能上,神经刺激用于激活假体,唤醒感觉功能[6],而神经记录可以感知神经信号或完成刺激效果的评估[7–9]。将神经刺激器和神经记录器结合起来,形成闭环控制的同步神经记录和刺激系统,以恢复受伤个体的基本功能[10–16],例如用于癫痫发作检测和抑制的系统[17,18]。如图1所示,在用于癫痫发作检测和抑制的闭环神经记录和刺激系统中,神经记录用于检测脑内的癫痫信号,电刺激用于
摘要:人们已经对眼球运动及其作为眼部伪影 (OA) 对脑电图 (EEG) 记录的贡献进行了深入研究。然而,它们的存在通常被认为会妨碍分析。一种被广泛接受的绕行方法是避免伪影。OA 处理通常简化为拒绝受污染的数据。为了克服数据丢失和行为限制,研究小组提出了各种校正方法。最先进的方法是数据驱动的,通常要求 OA 与大脑活动不相关。这对于视觉运动任务并不一定成立。为了防止相关信号,我们研究了一种双块方法。在第一个块中,受试者根据视觉引导范式进行扫视和眨眼。然后,我们为这些数据拟合了 5 种伪影去除算法。为了测试它们在伪影衰减和大脑活动保存方面的平稳性,我们在一小时后记录了第二个块。我们发现,扫视和眨眼仍可减弱到偶然水平,而休息试验期间的大脑活动仍可保留。
随着对具有可靠和多功能控制的假肢的需求不断增长,肌电模式识别和植入传感器方面的最新进展已被证明具有相当大的优势。此外,可以通过刺激残留神经实现假肢的感觉反馈,从而实现对假肢的闭环控制。然而,这种刺激会导致肌电图 (EMG) 信号中出现干扰伪影,从而降低假肢的可靠性和功能。在这里,我们实现了两种实时刺激伪影去除算法,即模板减法 (TS) 和 ε - 正则化最小均方 (ε -NLMS),并研究了它们在植入神经袖和 EMG 电极的两名肱骨截肢者中离线和实时肌电模式识别的性能。我们表明,这两种算法都能够显著提高伪影破坏的 EMG 信号的信噪比 (SNR) 和离线模式识别准确性。此外,这两种算法都改善了主动神经刺激期间运动意图的实时解码。尽管这些结果取决于用户特定的传感器位置和神经刺激设置,但它们仍然代表了朝着能够进行多功能控制和同时感觉反馈的双向神经肌肉骨骼假肢迈出的进步。
结果:模拟是在抑郁症的实际脑电图数据库上进行的,以证明所提出的技术的影响。为了得出结论所提出的技术的疗效,SNR和MAE已被确定。获得的结果表明,联合EMD-DFA-WPD技术的MAE的信噪比和较低的MAE值较低。此外,基于随机的森林和SVM(基于支持矢量机)的分类显示,该提议的Denoising技术的精度提高了98.51%和98.10%。与拟议的方法相比,EMD-DFA的精度分别为98.01%和95.81%,EMD与DWT技术相当于98.0%和97.21%的RF和SVM技术。此外,将两个分类器的分类性能进行了比较,也没有降级以突出提出的技术的效果。
摘要 — 脑电图 (EEG) 是大脑电生理活动的记录,通常通过放置在头皮上的电极进行。EEG 信号包含有关大脑状态的有用信息,特定状态与特定频率的振荡(所谓的脑电波)相关;因此,EEG 信号通常根据其频率内容进行分析。一个值得注意的例子是 alpha 波 (8-14 Hz) 的幅度估计。本文提出了一种基于模型的估计方法,该方法基于已知的 alpha 波物理特性,可在快速幅度动态的情况下增强稳健性,并自动识别 alpha 波中可能存在的伪影或不连续性。本文通过应用于临床 EEG 信号说明了所提出的方法,但它特别适用于可穿戴 EEG 应用,例如脑机接口 (BCI),其中没有专家的人工监督。索引词 — 脑电图、生物医学测量、信号处理、时域分析、频域分析、数字滤波器、脑机接口
随着对可靠和多功能控制的假肢的需求增加,肌电模式识别和植入传感器的最新进展已被证明具有很大的优势。另外,可以通过刺激残留神经来实现假体的感觉反馈,从而可以对假体进行闭环控制。然而,这种刺激会导致肌电图(EMG)信号中的干扰伪影,从而恶化假体的可靠性和功能。在这里,我们实施了两种实时刺激伪影算法,模板减法(TS)和ε范围的最小平均正方形(ε-NLMS),并研究了它们在植入了两种经过植入的具有神经奶酪的经过跨乳液中的植物和实时的肌关系中的性能和实时的肌肌摄影。我们表明,这两种算法都能显着提高信号 - 噪声比(SNR)和totifact-prount的EMG信号的图案识别精度。此外,两种算法都改善了主动神经刺激期间运动意图的实时解码。尽管这些结果取决于用户特定的传感器位置和神经刺激设置,但它们仍然代表了能够多功能控制和同时感觉反馈的双向神经肌肉骨骼假体的进步。