为了在高维空间中实现项目的目标,这项工作将利用域分解技术,特别是Pinn-PGD [2],以识别缺失的偏微分方程(PDE)项。此方法可以增加物理模型,从而通过求解修改后的PDE进行后续验证。该方法在源自非线性模型的数据上显示,而假定已知的物理模型是线性的。结果展示了提出的技术如何用非线性术语对线性模型进行补充,以发现原始的非线性公式。所提出的方法可用于表征船只与物理测量的结构建模的偏差,并增强原始材料建模公式。
摘要:数据增强对于像素的注释任务(如语义分割)至关重要,在语义分段中,标签会重大努力和大量劳动。传统方法,涉及简单的转换,例如旋转和翻转,创建新图像,但通常沿关键语义维度缺乏多样性,并且无法改变高级语义属性。为了解决这个问题,生成模型已成为通过生成合成图像来增强数据的有效解决方案。可控的生成模型通过使用提示和来自原始图像的视觉引用为语义分割任务提供数据增强方法。但是,这些模型在生成合成图像时面临挑战,这些图像由于难以创建有效的提示和视觉参考而准确地反映原始图像的内容和结构。在这项工作中,我们引入了使用可控差异模型进行语义分割的有效数据增强管道。我们提出的方法包括使用类别附加和视觉事先融合的类别添加的有效及时生成,以增强对真实图像中标记的类的关注,从而使管道能够生成精确数量的增强图像,同时保留分割标记的类的结构。此外,我们在合成和原始图像合并时实现了平衡算法的类平衡算法。对Pascal VOC数据集的评估,我们的管道证明了其在生成语义分割的高质量合成图像方面的有效性。我们的代码可在此HTTPS URL上找到。
数据增强方法是手工设计或基于模型的。手工设计的方法,例如视觉效果中的颜色变化和随机裁剪或DNA序列中的突变,需要人类输入,并且通常是特定于数据的,并且与复杂的数据进行了斗争,在这些数据中,小变化显着影响语义。语义与无关的方法(例如添加噪声)存在,但并不总是有效的。此外,手工设计的方法需要更多样本来减轻微妙的语义变化中的风险,这在诸如生物学之类的昂贵域中挑战。使用生成模型(VAE,GAN,扩散)的基于模型的方法改善了视力任务和监督学习的训练,但面临着对多样性,概括和对外部数据的依赖的担忧。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年2月22日发布。 https://doi.org/10.1101/2024.02.20.581294 doi:Biorxiv Preprint
摘要。计算认知神经成像研究的进展与大量标记脑成像数据的可用性有关,但此类数据稀缺且生成成本高昂。虽然在过去十年中为计算机视觉设计了强大的数据生成机制,例如生成对抗网络 (GAN),但此类改进尚未延续到脑成像领域。一个可能的原因是 GAN 训练不适合功能性神经成像中可用的嘈杂、高维和小样本数据。在本文中,我们介绍了条件独立成分分析 (Conditional ICA):一种快速功能性磁共振成像 (fMRI) 数据增强技术,它利用丰富的静息状态数据通过从 ICA 分解中采样来创建图像。然后,我们提出了一种机制来根据使用少量样本观察到的类来调节生成器。我们首先表明,生成机制能够成功合成与观察结果难以区分的数据,并且能够提高大脑解码问题的分类准确率。特别是,它的表现优于 GAN,同时更易于优化和解释。最后,条件 ICA 无需进一步调整参数即可提高八个数据集的分类准确率。
摘要 目的. 脑电图 (EEG) 情绪识别中的数据稀缺问题导致难以使用机器学习算法或深度神经网络构建高精度的情感模型。受新兴深度生成模型的启发,我们提出了三种增强 EEG 训练数据的方法,以提高情绪识别模型的性能。方法. 我们提出的方法基于两个深度生成模型,变分自编码器 (VAE) 和生成对抗网络 (GAN),以及两种数据增强方式,即全部使用和部分使用策略。对于全部使用策略,所有生成的数据都会被增强到训练数据集中,而不会判断生成数据的质量;而对于部分使用策略,仅选择高质量数据并附加到训练数据集。这三种方法称为条件 Wasserstein GAN (cWGAN)、选择性 VAE (sVAE) 和选择性 WGAN (sWGAN)。主要结果. 为了评估这些提出方法的有效性,我们对两个用于情绪识别的公共 EEG 数据集(即 SEED 和 DEAP)进行了系统的实验研究。我们首先以两种形式生成逼真的脑电图训练数据:功率谱密度和差分熵。然后,我们用不同数量的生成逼真的脑电图数据扩充原始训练数据集。最后,我们训练支持向量机和具有快捷层的深度神经网络,使用原始和扩充的训练数据集构建情感模型。实验结果表明,我们提出的基于生成模型的数据增强方法优于现有的数据增强方法,如条件 VAE、高斯噪声和旋转数据增强。我们还观察到,生成的数据数量应小于原始训练数据集的 10 倍才能达到最佳性能。意义。我们提出的 sWGAN 方法生成的增强训练数据集显著提高了基于脑电图的情绪识别模型的性能。
在人与人之间的互动中,检测情绪通常很容易,因为可以通过面部表情、肢体动作或语音感知到情绪。然而,在人机交互中,检测人类情绪可能是一项挑战。为了改善这种互动,出现了“语音情绪识别”一词,目的是仅通过语音语调识别情绪。在这项工作中,我们提出了一种基于深度学习方法和两种高效数据增强技术(噪声添加和频谱图移位)的语音情绪识别系统。为了评估所提出的系统,我们使用了三个不同的数据集:TESS、EmoDB 和 RAVDESS。我们采用了多种算法,例如梅尔频率倒谱系数 (MFCC)、零交叉率 (ZCR)、梅尔频谱图、均方根值 (RMS) 和色度,以选择最合适的代表语音情绪的声音特征。为了开发我们的语音情感识别系统,我们使用了三种不同的深度学习模型,包括多层感知器 (MLP)、卷积神经网络 (CNN) 和将 CNN 与双向长短期记忆 (Bi-LSTM) 相结合的混合模型。通过探索这些不同的方法,我们能够确定最有效的模型,以便在实时情况下从语音信号中准确识别情绪状态。总的来说,我们的工作证明了所提出的深度学习模型的有效性,
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2024年10月29日。 https://doi.org/10.1101/2024.10.24.620004 doi:Biorxiv Preprint
处理步骤,但对于带有可变音调的打印图案,它的灵活性较小。此外,将DSA应用于高量制造的主要挑战之一是观察到的缺陷密度,该缺陷密度分别大于所需的缺陷密度为1和0.01缺损cm 2用于记忆和逻辑应用。最常见的缺陷是桥梁和位错。,即使EUVL也没有缺陷问题,如先前的工作4、5所述,并且被证明会导致桥梁缺陷。为了解决大型缺陷密度的关注,尤其是在DSA中,采用各种过程的选择步骤来确定可以减少整体缺陷密度的重要因素;优化步骤包括不同的退火条件,表面模式的周期性,指南线的宽度,模式的地形以及背景化学等。对于列出的处理步骤的每一个组合,进行扫描电子显微镜(SEM)图像的缺陷检查以评估处理条件的性能是必不可少的。这涉及为统计目的收集足够数量的SEM图像,并手动执行缺陷检测或使用图像处理工具。随着处理步骤的不同组合的数量增加,缺陷的手动标记效率低下。解决方案之一是使用新兴的深度学习算法来检测和分类不同类型的缺陷。在材料科学领域,已经应用了许多算法来从给定的图像集中学习复杂的缺陷特征。例如,(1)Xie等。6使用多级支持向量机算法来检测印刷电路板和晶圆中最常见的缺陷。这些缺陷涉及环,半圆,簇和划痕。(2)Zheng和Gu 7采用了学习算法的机器,以检测具有高准确性的石墨烯中多个空缺数量。(3)Tabernik等。8报道了一项研究,在该研究中,他们利用基于细分的深度学习体系结构从某些工业应用的角度来检测成品中的表面异常。对缺陷的深度学习辅助识别不仅限于材料科学领域,因此已在其他各个领域中用于诸如下水道管道9、10和水果缺陷检测中的缺陷检测。11我们认为,使用这种自动化方法来计算不同类型的缺陷,并指定其在线路和空间(L/S)模式中的位置,可以帮助过程工程师快速收集足够的统计数据,并提供更准确,更一致的方法来评估每个处理条件的组合。通常,需要大量培训样本以确保网络的高精度。不幸的是,如前所述,由于人类的努力和专业知识所需的负载,因此要求SEM图像中存在的缺陷标记的时间耗时的过程。这为收集足够的数据构成了深度学习网络所需的精度的障碍。13,14另一种数据增强方法是通过执行模拟来扩展数据集。数据增强是一种可行的选择,可以通过利用原始数据集中的更多信息来夸大培训数据集。如Shorten和Khoshgoftaar的评论论文所讨论的,12个增强策略包括几何和颜色变换,随机擦除和特征空间扩展。翻转图像是最简单,最便宜的策略之一,结合了其他几何形状转换,旋转和缩放的几何变换可提高深度学习算法的准确性。在Carrasco-Davis等人的天文事件的分类中探索了这种策略,15,其中作者依靠基于物理的模型来生成模拟数据集。参考。16,如Holtzman等人所述,使用点散射模型生成的模拟数据集为雷达图像模拟。17与真实的数据集混合在一起,可以提高船舶合成孔径雷达图像中目标识别的准确性。在这项工作中,使用最小的SEM数据集进行培训[O(100)图像],我们使用了一个受良好版本3的启发的对象分类和检测网络。在剪切 - 索尔沃退火条件下使用圆柱体组成共聚物进行实验后,收集了SEM数据集。19网络中的卷积层和过滤器的数量已针对网络的准确性进行了优化。实施了各种激活功能和不同损失功能的进一步检查。使用两种策略夸大了具有有限数量SEM图像的初始数据集:(1)几何转换