使用高级光子源(AP)基于Web的系统,研究人员必须通过准备和提交实验安全评估表(ESAF)来定义APS的实验活动范围。提交的ESAF将生成实验危害控制计划(EHCP)。ESAF识别与实验相关的材料,设备,过程和危害。EHCP确定了减轻危害到可接受的风险水平所需的所有控件,并定义了ESAF的工作范围。APS的工作人员和非助长者研究人员必须遵循本政策和程序中所述的实验评估和批准过程,用于在X-Ray Beamine和APS的其他实验设施(例如实验室)上进行的实验。为了本政策和程序的目的,该组织负责该设施的日常运营,其中实验称为实验操作管理。实验操作管理包括协作访问团队(CAT)和APS XSD组。实验操作管理和APS实验安全审查委员会(ESRB)作为审查过程中的合作伙伴一起工作,以确保在APS维护安全的工作环境。一个实验不能没有:
这项工作报告了开发用于操作中子表征的缩小尺寸的激光粉末融合装置。描述了设计注意事项,设备配置和详细的设置。该设备已针对中子衍射的安装和工具进行了优化,用于对印刷过程中金属组件的结构和微观结构演变和构成的多种研究。与设备的介绍结合使用,我们提供了操作中性中子衍射的示例,用于应变分析和操作中子成像,以进行缺陷表征和温度映射在瑞士散布中子源的两个不同光束线上。通过获取可易受裂纹材料的衍射模式并跟踪衍射峰的变化,可以在处理过程中挖掘出固定体积内弹性菌株的热贡献的演变。散装缺陷表征。中子束衰减的变化与最终的微观结构相关,它证实了该技术在操作中表征了探测器内部缺陷形成的能力。我们进一步证明了如何使用铍过滤器,因此如何使用冷中子光谱的长波长部分,可以在打印双金属复合材料时在空间和时间分辨的温度图中获得。
先进光源 (ALS) 是一个基于电子储存环的同步辐射设施,由美国能源部基础能源科学计划 (DOE-BES) 提供支持。ALS 于 1993 年开始运行,此后不断升级,一直是世界上最亮的软 x 射线源之一。ALS 针对使用来自软 x 射线波荡器源的强光束的 x 射线光谱、显微镜和散射进行了优化,但也为更广泛的社区提供服务,这些社区使用来自超导磁体、传统偶极磁体和插入装置的硬 x 射线、红外 (IR) 和真空紫外 (VUV) 辐射进行研究。1.9 GeV 环在 40 多条光束线上拥有世界一流的终端站和仪器,为近 1700 名用户提供服务,他们每年出版 800 多份出版物,并在能源科学、地球和环境科学、材料科学、生物学、化学和物理学领域开展基础、应用和工业研究。我们的使命是向广大科学界提供我们世界一流的同步加速器光源能力和专业知识,推动科学进步,造福社会。发展、维护和支持一个充满活力和多样化的用户社区对于 ALS 作为用户设施的成功至关重要。为了吸引社区,ALS 科学家通过多种渠道与社区进行接触,包括参加会议、组织研讨会以及参加董事会和审查委员会。
同步加速器辐射(SR)提供了广泛的明亮光,可以量身定制以测试无数的研究问题。sr提供了跨尺度阐明结构和组成的途径,使其非常适合研究植物和种子。在这里,我们介绍了一系列方法论和在光源设施上可用的数据输出。数据集具有来自包括Citrullus sp的各种作物物种的种子和谷物。(西瓜),木制sp。(菜籽),Pisum sativum(Pea)和Triticum durum(小麦),以展示SR在推进植物科学方面的力量。SR微型计算层析成像(SR-µCT)成像的应用显示了内部种子微观结构及其三维形态,而无需破坏性切片。光谱探测了样品生物化学,详细介绍了种子大量营养素的空间分布,例如胚胎,胚乳和种子涂层中脂质,蛋白质和碳水化合物。使用同步加速器X射线的方法,包括X射线吸收光谱(XAS)和X射线荧光(XRF)成像显示元素分布,以在种子子组门中的空间图中绘制微量营养素并确定它们的物种。同步基谱镜(SM)允许在纳米级水平上解析化学成分。各种农作物种子数据集展示了加拿大光源五个梁线提供的结构和化学见解的范围,以及用于告知植物和农业研究的同步成像的潜力。
亲爱的同事,过去一年是Eli的重大里程碑和变革性成就的时期。自2024年1月1日以来,Eli Eric正在运营Eli Alps和Eli Beainlines设施,以及单个治理和管理结构,实现了ELI的愿景。此集成的关键好处之一是建立单个用户办公室。这个办公室率领ELI的核心使命,并在所有ELI设施中对齐用户程序。目的是确保为我们的用户带来凝聚力和高质量的体验。仍然有很多工作要做,但是在其建立以来的头两年中,我们发起了四个联合用户呼吁,对ELI的兴趣正在迅速增长。信息很明确:我们的门是开放的,我们欢迎来自世界各地的科学家。第四次呼叫导致提交的记录编号,其中有114个科学家的数量。总共有341个提案已从31个国家提交,其中1,100多名个人研究人员。ELI设施正迅速成为跨学科合作的枢纽,从而探索了新的科学领域,扩大和丰富了我们的用户社区。高级系统为数据收集和生产力提供了很高的潜力,从根本上转移了如何在某些领域进行实验。符合我们对发展科学领域的承诺,Eli正在积极追求开创性的项目。其中,有关激光诱导的融合和
极端光基础设施ERIC ERP项目经理极端光基础设施(ELI)极端光基础设施(ELI ERIC)是世界上最大,最先进的高功率激光研究基础设施。作为致力于多学科科学的国际用户设施,Eli提供了对世界一流的高功率,高级重复速率激光系统的访问权限,并启用了切削障碍研究以及突破性的技术创新。Eli Eric是一个单一的多站点组织,具有两个互补的设施,专门研究不同的研究领域:DolníB坡的Eli Bebinine(捷克共和国)(捷克共和国)和Szeged(匈牙利)的Eli Alps。Eli Eric DG的办公室正在寻找ERP项目经理,以监督组织的ERP系统的开发和实施。此角色对于推动多个阶段的成功实施,确保与战略业务目标保持一致至关重要。该职位是全职的,总部位于捷克共和国的多尔尼·巴伊(DolníB场)。您将做什么:作为ERP项目经理,您将负责监督ERP系统实施的完整生命周期。您将从头到尾领导该项目,与内部团队和外部供应商密切合作。您的角色将包括管理项目的目标,时间表,资源和可交付成果,以确保成功执行并与业务目标保持一致。您将确保项目的适当治理,并向指导委员会和高级管理层报告。该角色的主要活动是:
大分子晶体学对理解疾病的理解产生了重大贡献,更重要的是,如何通过提供蛋白质的原子共生3D结构来治疗它们。这是通过从重要的生物学途径中收集蛋白质晶体的X射线衍射图像来实现的。点调子用于检测具有可用数据的晶体的存在,这些晶体的斑点是用于解决相关结构的主要数据。具有快速准确的斑点查找是必不可少的,但是用于生成X射线衍射图像的同步器束线的最新进展使我们达到了现有最佳的Spotfinders可以做到的范围。必须删除此瓶颈,以便Spotfinder软件可以跟上X射线梁线的加快 - 重新改进,并能够看到解决衍射图像时遇到的最具挑战性问题所需的弱或分散点。在本文中,我们首先介绍Bragg Spot检测(BSD),这是一个大型基准Bragg Spot图像数据集,其中包含304张图像,其中有66 000多个景点。然后,我们与图像预处理,U-NET分割主链以及包括伪像删除和分水岭分段的后加工有关,讨论开源可扩展的基于U-NET的Spotfinder Bragg Spot Finder(BSF),并进行了图像预处理,U-NET分割骨架和后处理。最后,我们对BSD基准进行实验,并获得(就准确性而言)与使用两个流行的Spotfinder软件包(Dozor和Dials)获得的结果相当或更好,这表明这是支持未来扩展和改进的合适框架。
背景和客观:作为一种新型的非侵入性人脑刺激方法,经颅聚焦超声(TFU)由于其出色的空间特异性和深度 - 可延迟而受到了越来越多的关注。由于TFU的焦点需要在刺激过程中精确固定到目标大脑区域,因此一个关键问题是识别和维持与受试者头部相对于受试者头的准确位置和方向。本研究的目的是提出整个TFUS刺激的框架,整合了作者先前提出的用于TFUS透射器配置优化的方法和受试者特异性的3D打印头盔,并在人类行为神经调节研究中验证这一完整的设置。方法:为了找到TFU换能器的最佳配置,使用了基于受试者特定的TFUS BEAILINE模拟的数值方法。然后,已经使用了特定的3D打印头盔,以有效地将换能器固定在估计的最佳配置下。为了验证该TFU框架,选择了一个常见的行为神经调节范例;背外侧前额叶皮层(DLPFC)刺激对抗扫视行为的影响。虽然人类参与者(n = 2)作为任务执行,但在固定目标消失后,将TFU刺激随机应用于左DLPFC。结果:神经调节结果强烈表明,使用所提出的TFUS设置的皮质刺激有效地降低了抗扫视的错误率(S1的S1和-16%P约为-10%P),而没有对其延伸的效果进行良好的效果。这些观察到的行为效应与基于常规脑刺激或病变研究的先前结果一致。结论:拟议的主体特异性TFU框架已有效地用于人类神经调节研究中。结果表明,针对DLPFC的TFU刺激可以对AS行为产生神经调节作用。©2022作者。由Elsevier B.V.这是CC BY-NC-ND许可(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章
摘要我们将在LCLS上介绍最近的OPɵCS计量学,以展示X射线opɵc挑战的Mulɵtude,以及我们如何适应我们的乐器挑战。今年,我们在LCLS安装了两个主要的OPɵC系统,即X射线仪器(TXI)的Kirkpatrick-Baez(KB)镜像系统和RIX的Qrix光谱仪的材料科学共振InelasɵCX射线scaʃing。txi是一种独特的实验厨具,因为它旨在同时采用Soō和柔软的X射线,该射线来自LCLS的两个单独的光束线。TXI的KB镜像系统由两对KB镜子组成,即Soō和柔软的X射线对,总共有四个1-M长的镜子。要安装此镜像系统,我们必须在密封镜室之前在同一ɵ师时(大约一个月)中鉴定所有四个镜子。为了效率,我们将镜子和弯曲器成对符合其歌剧Orientaɵon的成对,即朝向和侧面,同时与verɵcal和横向测量。这是通过在最初为长痕量专业仪(LTP)建造的花岗岩龙门系统上添加fizeau干涉仪来实现的。通过此升级,龙门系统现在包含SɵTCHING仪器和LTP。QRIX光谱仪旨在实现多达约50,000个分辨能力,以便我们可以获取高分辨率的RIX数据。它由抛物线镜和一个巨大的,可变的线间距(VLS)graɵng和1500行/mm组成。用Verɵcalsɵtching仪器在其摇篮中测量了抛物线镜。用LTP测量Graɵng。由于测量方法的2D性质,扭曲误差被视为奖励。这也使我们还可以最大程度地减少安装镜中的扭曲误差。然而,该graɵng在底物中具有预先构造的圆柱形形状,因此我们必须首先用LTP测量形状,然后测量liʃrow中的线密度,同时补偿该形状。将在研讨会上讨论测量策略和计量结果。
1 简介 光源和中子源通过捕捉复杂物质的结构和电磁动力学,在理解不同时间和长度尺度上复杂物质的基本特性方面发挥着关键作用。这些科学设施依赖于人类建造的一些最复杂的机器。例如,X射线自由电子激光器(XFEL)由粒子加速器驱动,产生高度相干的光以对样品进行详细成像,其操作需要许多子系统的紧密集成:高性能粒子加速器、产生X射线的灵敏磁波荡器、高功率X射线光学器件以及复杂的探测器和复杂的样品环境(例如与超快激光器同步泵浦)。全面利用光源和光束线的功能可以在生物学、化学、物理学和材料科学等广泛领域带来新的科学发现。越来越复杂的仪器和光源功能可以实现前所未有的测量,从而揭示物质的基本特性。然而,相对于巨大的实验需求,中子和光源的稀缺导致分配的光束时间短缺。因此,迫切需要开发实时数据分析和实验指导能力,以有效利用有限的实验时间并最大限度地提高收集数据的科学价值。此外,还需要减少目前花在设置设施以交付给不同实验上的大量时间。光源实验可以从数字孪生 (DT) 技术中受益匪浅,该技术可以利用先前的测量、已知参数和理论来指导实验期间的采样策略并产生独特的科学见解。DT 对于简化用户设施的运行至关重要,这涉及复杂的系统控制。光源也是开发和部署 DT 技术的理想试验台。此类试验台的经验对于开发可靠、可持续、可互操作的 DT 基础设施至关重要,这些基础设施可用于美国国家利益的众多应用领域(气候、能源网等)。复杂光源的一个突出例子是独一无二的高重复率它们是高度动态的系统,随着时间的推移,条件会发生许多有意和无意的变化,它们由多个复杂的相互作用的子系统组成,这些子系统需要协同运行才能获得最佳性能,它们具有可以轻松利用和与测量数据融合的物理模拟,与许多其他应用程序相比,它们为探索 DT 概念提供了更封闭的环境(例如,与全球气候的 DT 相比),并且全球有许多具有共享设计的光源,从而能够探索易于跨系统互操作和交换的技术。