拖拉图是脑白质的虚拟表示。它由数百万的虚拟纤维组成,编码为3D polyline,近似于白质轴突途径。迄今为止,拖拉图是最准确的白质表示形式,因此用于诸如神经塑性,脑部疾病或脑网络的术前计划和研究。然而,众所周知的问题是,大部分的拖拉机在解剖学上并不合理,并且可以被视为跟踪程序的伪像。使用验证者,我们使用一种新颖的完全监督的学习方法解决了过滤术的问题。与基于信号重建和 /或大脑拓扑正则化的其他方法不同,我们使用现有的白质解剖学知识来指导我们的方法。使用根据解剖学原理注释的拖拉图,我们训练我们的模型验证者,以将纤维分类为解剖上合理或不合理的纤维。所提出的验证模型是一种原始的几何深度学习方法,可以处理可变尺寸纤维,同时又不变到纤维方向。我们的模型将每个文件视为点的图表,并且通过通过提出的序列边缘卷积之间的边缘学习特征,它可以捕获基本的解剖学特性。在一组广泛的实验中,输出过滤结果高度准确,稳健,并且快速;使用12GB的GPU,对1m纤维的拖拉图进行了填充,需要少于一分钟。可在https://github.com/fbk-nilab/verifyber上获得验证实现和训练有素的模型。
随机 dropout 已成为人工神经网络 (ANN) 中的标准正则化技术,但目前尚不清楚生物神经网络 (BioNN) 中是否存在类似的机制。如果存在,其结构很可能经过数亿年的进化而得到优化,这可能表明大规模 ANN 中存在新的 dropout 策略。我们认为大脑血清素纤维 (轴突) 满足一些预期标准,因为它们无处不在、结构随机,并且能够在个体的整个生命周期中生长。由于血清素纤维的轨迹可以建模为异常扩散过程的路径,因此在这项概念验证研究中,我们研究了一种基于超扩散分数布朗运动 (FBM) 的 dropout 算法。结果表明,血清素纤维可能在脑组织中实现类似 dropout 的机制,从而支持神经可塑性。他们还提出,血清素纤维的结构和动力学的数学理论有助于设计 ANN 中的 dropout 算法。
高效的长距离能量传输对于光电和光收集设备至关重要。尽管有机分子的自组装纳米纤维表现出较长的激子扩散长度,但将这些纳米纤维排列成具有相似性质的大型有序域的薄膜仍然是一个挑战。本文展示了如何用离散长度的寡二甲基硅氧烷(o DMS)侧链对 C3 对称羰基桥接三芳胺三酰胺 (CBT) 进行功能化,从而形成完全覆盖的表面,其中排列的域最大可达 125 × 70 μ m 2,可在其中进行长距离激子传输。域内的纳米级形貌由高度有序的纳米纤维组成,纳米纤维在柔软的非晶态 o DMS 基质内具有离散的柱间距。o DMS 可防止 CBT 纤维捆绑,从而减少 CBT 柱内的缺陷数量。因此,这些柱具有高度的相干性,导致激子扩散长度为几百纳米,激子扩散率(≈ 0.05 cm 2 s − 1)与结晶四苯并菲相当。这些发现代表了通过使用 o DMS 功能化实现高度对齐的纳米纤维完全覆盖表面的下一步。
异质材料的机械行为,例如薄 - LM微电动机械系统(MEMS)材料和先进的光谱材料,特别强调了层压结构构造。各向异性和晶体学弹性配方。组成部分的结构,特性和力学,例如lms,底物,活性材料,Bers和矩阵,包括纳米和微尺度成分。具有性特性。经典的层压板理论,用于建模结构行为,包括外在和内在菌株以及环境效果等应力。板和非线性(变形)板理论的屈曲简介。在建模异质材料(例如层压结构的断裂/故障)中进行建模的其他问题。B. L. Wardle,S-G。 KimB. L. Wardle,S-G。 Kim
已经进行了一项研究,以制造和化学修改Torlon®4000T和Torlon/p84共聚酰胺 - 酰亚胺混合的空心纤维作为异丙醇(IPA)脱水的新材料。已经发现,Torlon/p84混合物是可混杂的,正如通过单玻璃过渡温度(T G S)确认的,这些温度(T G S)通过差分扫描量热法(DSC)检测到。由干式湿旋转工艺制造的纯和混合空心纤维都不显示出对抑制水和IPA诱发的肿胀的能力,而交联的纯Torlon空心纤维仅显示边缘改善。然而,借助p- xylenadiamine,Torlon/P84混合纤维在化学交联修饰后表现出增强的分离性能。据信P- Xylenenediamine诱导的交联反应会导致更大的链条堆积和自由体积的减少。对于85/15 wt。%ipa/h 2 o进料溶液,获得的最高分离系数为185±8,所获得的总渗透量为1000±45 g/m 2 h。 ©2007 Elsevier B.V.保留所有权利。
摘要:为了加速双色纤维,基于纤维的功能透气设备和其他技术纤维的工业化并为保护发明人的财产权,有必要开发快速,经济且易于测试的方法,以提供一些指南,以制定相关测试标准。在本研究中开发了一种基于横截面原位观察和图像处理的定量方法。首先,纤维的横截面是通过非嵌入方法迅速制备的。然后,将传输和反射型金属显微镜用于原位观察并捕获纤维的横截面图像。这种原位观察结果允许对双组分纤维的类型和空间分布结构进行快速识别。最后,根据AI软件的密度,横截面面积和每个组件的总测试样品,通过AI软件迅速计算了每个组件的质量百分比含量。通过比较轨道显微镜的超深度,差异扫描量热法(DSC)和化学溶解方法,定量分析是快速,准确,经济的,易于操作,节能且对环境友好的。此方法将广泛用于智能定性识别和对双组分纤维,基于纤维的纤性设备和混合纺织品的定量分析。
当在熔融挤出过程中与再生或纯聚酯或尼龙混合时,CICLO®活性成分会产生吸引自然存在的微生物的途径。这可以使CICLO®纤维的完全生物降解,仅留下自然元素。仅在长期暴露于水分和微生物后才激活生物降解,确保纤维和织物在使用过程中保持其耐用性和性能。
摘要:电子设备通常由于其效力,生理有效性和负担能力而使用可充电的锂离子电池。静电纺丝技术为机械强度,快速离子运输和易于生产提供了提高的纳米纤维,这使其与传统方法具有吸引力。本评论涵盖了最近形态变化的纳米纤维,并检查了新兴的纳米纤维制造方法和电池技术进步的材料。电纺技术可用于生成用于电池分离器的纳米纤维,这是电极,具有抗抗反感的核心壳纳米纤维。本综述还确定了回收废物和生物量材料的潜在应用,以提高静电纺丝过程的可持续性。总的来说,这篇综述提供了对电池电纺上当前发展的见解,并突出了该领域的商业化潜力。
摘要:作为具有广泛应用的现代材料,日常生活中经常遇到纳米纤维。生产技术的重要优势,例如容易,具有成本效益和工业适用的是纳米纤维偏爱的重要因素。纳米纤维在健康领域具有广泛的使用范围,在药物输送系统和组织工程中都是优选的。由于其结构中使用的生物相容性材料,它们在眼部应用中也经常受到首选。他们作为药物输送系统的药物释放时间很长,并且已用于角膜组织研究,这些研究已成功地在组织工程中开发出来,这是纳米纤维的重要优势。本综述研究了纳米纤维,其生产技术和一般信息,基于纳米纤维的眼药输送系统以及详细的组织工程概念。
水果因其丰富的生物组件(包括碳水化合物,矿物质,维塔米和bers)而在饮食选择中获得了突出性。世界卫生组织(WHO)建议每天的水果摄入量以进行生物活性,营养和健康良好的益处,1,2促进整体健康和福祉。大量证据将水果和蔬菜的消费与包括肿瘤在内的各种疾病的死亡率降低联系起来。3这种成功归因于固有的生物活性化合物,饮食ber和水果和蔬菜中存在的抗氧化剂。1,4在中东和北非地区(MENA),源自普通日期棕榈树的枣果作为最常见的功能性和营养成分之一。科学c评估已经确定了有助于人类健康的日期水果中的生物大分子,