°C Degree Celsius AFF Agriculture, Forestry, and Fisheries AR5 Fifth Assessment Report CABLE CSIRO Atmosphere Biosphere Land Exchange model CCAM Conformal-cubic atmospheric model CDRF Climate and Disaster Resilience Fund CMIP5 Coupled Model Intercomparison Project 5 CoGTA Department of Cooperative Governance and Traditional Affairs CRVA Climate Risk and Vulnerability Assessment CSIR Council for Scientific and Industrial Research CSIRO Commonwealth Scientific and Industrial Research Organisation LDM Lejweleputswa District Municipality DEA Department of Environmental Affairs DM District Municipality DRR Disaster Risk Reduction DWS Department of Water and Sanitation EcVI Economic Vulnerability Index EnVI Environmental Vulnerability Index GCM General circulation model GRiMMS Groundwater Drought Risk Mapping and Management System GVA Gross Value Added GDP Gross Domestic Product IDRC International Development Research Centre IPCC Intergovernmental Panel on Climate Change km Kilometre l/p/d Litres Per Person Per Day LM Local Municipality MAR Mean Annual Runoff mm Millimetre NDMC National Disaster Management Centre PVI Physical Vulnerability Index RCP Representative Concentration Pathways SCIMAP Sensitive Catchment Integrated Modelling and Prediction SDF Spatial Development Framework SEVI Socio-Economic Vulnerability Index SPI Standardised Precipitation Index SPLUMA空间规划和土地使用管理法案,2013年(法案号2013年16日)温度湿度指数WMAS水管理区域WMO世界气象组织Wrym水资源产量模型
我们子孙后代繁荣昌盛的能力取决于生物圈的状况,因为人类和地球的健康本质上是相互联系的。一个可持续的世界是我们在保护地球生态系统的同时改善生活质量的世界。然而,我们距离实现可持续发展还很远,我们面临的挑战是巨大的。世界人口预计将从 2022 年的 80 亿增长到 2050 年的 98 亿 1 ,对能源、城市服务和动物蛋白的需求不断增加。资源获取方式因我们所处的世界位置而发生巨大变化,53 个国家和地区有近 1.93 亿人严重缺乏粮食安全并需要紧急援助 2 ,而城市人口预计到 2050 年将占世界人口的 68% 3 。极端天气事件以前所未有的频率发生,并重塑了世界社会经济前景。
» 森林及其分布 » 森林保护 » 动物区系 印度经济和人文地理 • 印度的农业类型和主要作物 • 农业气候区 • 土地改革和土地利用模式 • 畜牧业、渔业和水产养殖 • 水资源 - 可用性和潜力:湖泊、河流、水坝、电力和灌溉项目、湿地和河流交汇处 • 矿产资源 - 分类和分布 • 能源资源 - 常规和非常规资源 • 印度的人口和增长趋势 - 密度、性别比例、识字率、部落和种族群体 • 农村和城市定居点 - 类型和模式 • 行业 - 类型及其位置因素 • 交通和通讯 - 铁路、公路、内陆水运、航运和海港、航空运输 • 来自印度的基于地图的问题(州、城市、河流、湖泊、重要地点(包括拉姆萨尔遗址、生物圈保护区、野生动物保护区和国家公园)的位置)
摘要:在生态可持续性和减少化疗药物浪费无疑是保护生物圈的特权的情况下,使用天然产物 (NPs) 代表了对抗癌症疾病的替代治疗方法。肿瘤体内异质性癌症干细胞 (CSC) 群体的存在与疾病复发和治疗耐药性有关。因此,CSC 靶向是一种阻碍癌症复发的有前途的策略。越来越多的证据表明,NPs 可以抑制与维持 CSC 干性有关的关键信号通路,并使 CSC 对标准化疗治疗敏感。此外,它们的毒性有限且大规模生产成本低,可以加速 NPs 在临床环境中的使用。在这篇综述中,我们将总结关于来自主要天然来源(例如食物、植物和海洋物种)的 NPs 对 CSC 的影响的最相关研究,阐明它们在临床前和临床研究中的用途。
*相应的作者:Amir H. Ahkami amir.ahkami@pnnl.gov,odeta qafoku odeta.qafoku@pnnnl.gov。作者的贡献:Amir H. Ahkami:概念化了这项工作,撰写了摘要,简介和第5.1节,用于监测根际中的营养和化学交换的第5.1节,促进了图1,2和7的发展,并审查并编辑了手稿。odeta Qafoku:概念化了工作;撰写介绍和第2节;综合成像和生化方法论,以解决时空中的根际过程;促进了图1,2和7的发展,并审查并编辑了手稿。tamas varga:写下基于图像的植物土壤相互作用的基于图像的建模的第4.1-4.2节:根际多尺度测量和建模;有助于开发图1和7。Tiina Roose:写第4节,基于图像的植物土壤相互作用的建模:根际多尺度测量和建模;有助于开发图7。Pubudu Handakumbura:撰写了第3.2节的构建环境,用于实验室,以对根际过程进行现场调查;有助于开发图2。Jayde A. Aufrecht:撰写了第3.1节的构建环境,用于实验室,以对根际过程进行现场调查;有助于开发图2。Arunima Bhattacharjee:审查和编辑第3.2节Yi Lu:撰写了第5.2节,《生物传感器》,用于监测根际中的营养和化学交换的生物传感器;开发图3。Quanbing Mou:撰写了第5.2节,《生物传感器》,用于监测根际中的养分和化学交换;开发图3。Zoe Cardon:写了第6节,对田间根际化学梯度的分布和动力学的测量;开发图4。Yuxin Wu:写了第7节,跨尺度的根际相互作用的检测:复杂系统中的升级挑战;写了《陆地生物圈命运》第8.2节:将植物土壤 - 微生物相互作用缩放到景观和世界上;开发图5。Joshua B. Fisher:书面第8节,陆地生物圈的命运:将植物土壤 - 微生物相互作用缩放到景观和世界上;开发图6。詹姆斯·J·莫兰(James J.
•气候变化和环境 - 温度和湿度是必不可少的气候变量(ECV),因此这些参数的可靠可追溯值是监视全球气候的关键,并为环境保护和气候变化缓解政策提供硬数据。CCT成员的测量能力是对整个生物圈中ECV的可靠确定,例如海洋,冰和土壤温度,空气RH和土壤水分。这些测量值仍然有许多方面,这些方面尚未得到充分理解(例如空气温度),尽管相对湿度的表达尚未标准化。与相关气候专家的持续参与,例如wmo,通过WG的环境,用于湿度的WG和气象学和气候会议的计量学是必不可少的,可以确保CCT的输入具有重大影响。此外,此主题与能源和先进的制造有密切相关。提高工业流程效率并建立能源效率可以降低工业排放和能源消耗,并有助于最大程度地减少建筑信封的能源损失。
1。生物多样性的概念2。生物宇宙的组成部分 - 物种丰富和物种均匀度; 3。生物多样性水平 - 组织(遗传,物种和生态系统),4。空间(Alpha,Beta和Gamma); 5。生物多样性的大小(全球和国家一级); 6。评估生物多样性 - 直接和间接使用值。7。地质时间尺度和物种进化(概述)8。物种灭绝9。生物多样性损失的原因 - 最终和近端原因10。IUCN的威胁类别计划(物种和生态系统)11。最新IUCN红色列表的摘要,红色数据簿12。全球生物多样性热点(标准,分配和保护意义)13。生物群落和生物多样性丰富度14。粮食安全和农业生物多样性15。生物库和生计16。对传统生计的威胁17。全球化和城市化对生计的影响18。原位保护策略(印度国家公园,野生动植物保护区和生物圈保护区); 19。ex situ保护策略(植物园,动物园,水族馆,种子库,基因库和冷冻保存)20。印度主要保护区(国家公园,野生动物保护区和生物圈保护区)的概述21。 生物多样性测量(采样单位形状,尺寸和数字); 22。 生物多样性代理(类型和使用); 23。 生物多样性保护中的遥感和地理信息系统24。 生物多样性信息学(概念和应用),25。印度主要保护区(国家公园,野生动物保护区和生物圈保护区)的概述21。生物多样性测量(采样单位形状,尺寸和数字); 22。生物多样性代理(类型和使用); 23。生物多样性保护中的遥感和地理信息系统24。生物多样性信息学(概念和应用),25。分类学在生物多样性研究中的作用26。全球生物多样性信息设施(GBIF)27。全球生物多样性目标和指标28。印度保护工作(组织&立法)29。气候变化和物种迁移; 30。臭氧耗竭和后果; 31。uv-b及其对生活的影响; 32。温室效应和全球变暖; 33。酸雨及其对生物和生态系统的影响; 34。环境影响评估(EIA) - EIA的概念和阶段; 35。可持续发展36.生物多样性公约(CBD) - 目的和目标; 37。拉姆萨尔大会38。京都协议39。生物多样性保护和公众参与(传统知识在生物多样性保护中的作用;基于社区的生态系统保护)40。能源危机和绿色能源的需求; 41。绿色建筑,垂直花园的概念;绿色,生态标记
摘要。本文提出了一种建模方法,旨在季节性地解决全球气候和土壤对陆地生态系统生产和土壤微生物呼吸模式的控制。我们使用卫星图像(高级甚高分辨率辐射计和国际卫星云气候学项目太阳辐射),以及来自全球(1 o)数据集的历史气候(每月温度和降水量)和土壤属性(质地、C 和 N 含量)作为模型输入。卡内基-艾姆斯-斯坦福方法 (CASA) 生物圈模型按月运行,以模拟植物净碳固定、生物量和养分分配、凋落物、土壤氮矿化和微生物 CO2 生成的季节性模式。模型估计的全球陆地净初级生产力为 48 Pg C yr -•,最大光利用效率为 0.39 g C MJ -• PAR。超过 70% 的陆地净产量来自
研究背景:社会长期可持续前进的基础是经济发展范式,它是一套科学成果,在一定时期内被视为社会科学和实践活动发展的基础。市场关系范式越来越无法解决社会和经济的重大问题,例如人口社会分层加剧、人为生物圈污染增加、生态系统正常运作被破坏以及许多其他同样重要的全球性问题。本文的目的:作者的目标是研究面对全球挑战的现代经济发展范式的可持续性。方法:作者对面对全球挑战的经济发展进行了系统分析。提出了对“全球挑战-全球行动”关系的新看法。发现和附加值:本文基于全球挑战和全球行动的相关性,提出了作者对现代发展范式危机表现的看法。
