ROF Paul Nicholson领导着一组研究人员,研究了约翰·英恩斯中心(John Innes Center)小麦抗病性的遗传基础。主要从事镰刀菌疫病的工作,他还对新疾病进行研究 - 小麦爆炸。fusarium是两种疾病中更复杂的,尽管有“已知”的抗药性基因,但围绕这些疾病是否是正确的抗性基因,凸显了保罗。“其他群体已经确定了两个基因,但我们的研究不支持它们。我们相信我们已经确定了一个抗药性基因,但是没有证据就无法公开它,证明了这种疾病的工作有多困难。”他说,在镰刀菌方面的相互作用不仅仅是遗传抗性,而是为了消除可取的因素,以防止疾病劫持和殖民植物“使用抗性基因,这些真菌对其进行反应和抗性,但是真菌必须产生蛋白质才能识别。在某些情况下,真菌实际上并不需要蛋白质,因此没有它就会发展,使植物视而不见。
使用成簇的规律间隔短回文重复序列 (CRISPR)-CRISPR 相关蛋白 9 (Cas9) 系统进行基因组编辑极大地促进了真菌病原体的遗传分析。穗枯萎病真菌禾谷镰刀菌会给具有重要经济价值的谷类作物造成毁灭性损失。最近开发用于禾谷镰刀菌的 CRISPR-Cas9 系统使得基因组编辑更加高效。在本研究中,我们描述了一种基于 CRISPR-Cas9 的基因组编辑工具,用于将预组装的 Cas9 核糖核蛋白 (RNP) 直接递送到禾谷镰刀菌的原生质体中。使用 RNP 显著增加了转化子的数量和成功用选择标记替换目标基因的转化子的百分比。我们表明,由 Cas9 核糖核蛋白介导的单个双链 DNA 断裂足以实现基因删除。此外,短同源重组仅需要靶基因两侧 50 个碱基对区域。Cas9 RNPs 的高效率使得大规模功能分析、必需基因的鉴定和基因删除成为可能,而这些是传统方法难以实现的。我们期望我们的方法将加速禾谷镰刀菌的遗传学研究。
将易感农作物植物植物和耐虫害的茎植物是一种有价值的管理实践,可减少全球植物性寄生虫和植物病原体造成的损害。抗甲酸中的耐药根可广泛用于嫁接番茄,茄子和胡椒作物,以控制多种疾病和线虫。已经开发出耐药的甲壳虫根stocks,用于嫁接西瓜,黄瓜,Luffa和Melon。几种果树种类(包括易感柑橘,苹果和橄榄)被嫁接在耐药的砧木上,尤其是用于管理土壤传播疾病和植物 - 寄生虫线虫。嫁接是土壤熏蒸的一种广泛使用的替代品,也是控制土壤传播疾病和线虫害虫的其他农药。Rootstocks of several crops have been developed with speci fi c resistance(s) to soil-borne diseases and plant-parasitic nematodes, including Verticillium wilt, Fusarium wilt, Fusarium crown and root rots, Southern blight, bacterial wilt, Huanlongbing (HLB), Phytophthora root rot, citrus tristeza virus, citrus Canker(Xanthomonas axonopodis),Meloidogyne Incognita,M。Arenaria,M。Javanica和Apple Repleant疾病(phytophthora,Pythium,Pythium,Cylindrocarpon和Rhizoctonia spp。与根神经线虫相互作用,Pratylenchus渗透性)。南部的根管线虫(M. inognita)易感番茄在线虫 - 耐药根上嫁接可降低根的腐蚀和增加的产量(Kunwar等,2015; Frey等,2020)。Meloidogyne Incognita会导致西瓜中的根,植物发育迟缓和果实产量降低。在耐药根stock上敏感的西红柿易受细菌枯萎病(ralstonia solanacearum)的果实,其果实产量高88%至125%(Sostoff等,2019)。野生西瓜根stocks对南部的根管耐药性具有
摘要 马铃薯作为第四大粮食作物,在全球经济中占有重要地位,但它受到众多害虫以及细菌、病毒和真菌疾病的影响。在这些疾病中,通过蚜虫在植物之间传播的马铃薯 Y 病毒 (PVY) 会造成严重的产量损失,但据我们所知,PVY 在欧洲的经济影响尚未量化。我们的经济研究涵盖了 2004 年至 2017 年之间的 13 年时间,基于对从瑞士和欧盟马铃薯行业各利益相关者以及田间试验获得的统计、经济和农艺数据的分析。在瑞士,PVY 对种子和商品生产造成的经济损失估计分别约为 2000 和 200 瑞士法郎/公顷。对于欧盟,每年的损失估计为 1.87 亿欧元,其中种子和商品损失分别为 9600 万欧元和 9100 万欧元。这些损失主要是由于种薯生产中化学处理的成本和成品薯产量下降。然而,根据文献,这些重大损失低于马铃薯晚疫病(致病疫霉菌)造成的损失,后者被认为是欧洲最具经济损失的马铃薯病害。
摘要:禾谷镰刀菌是一种丝状真菌,是小麦和其他谷类作物赤霉病的病原体,在全球范围内造成了重大的经济损失。本研究旨在利用 CRISPR/Cas9 介导的基因缺失技术研究特定基因在禾谷镰刀菌毒力中的作用。使用 Illumina 测序来表征编辑引起的基因组变化。出乎意料的是,两个分离株中发生了 2 号染色体上 525,223 个碱基对的大规模缺失,包含超过 222 个基因。许多被删除的基因被预测与氧化还原酶活性、跨膜转运蛋白活性、水解酶活性等基本分子功能以及碳水化合物代谢和跨膜转运等生物过程有关。尽管遗传物质大量丢失,突变分离株在大多数条件下仍表现出正常的生长率和对小麦的毒性。然而,在高温和某些培养基中,生长率显著降低。此外,还进行了使用夹子浸种法、种子接种法和头点接种法的小麦接种试验。未观察到毒性的显著差异,这表明这些基因不参与感染或替代补偿途径,并允许真菌在基因组大量缺失的情况下保持致病性。
与可卡酰储存腐烂相关的真菌生物包括尼日尔曲霉,富沙鲁伊姆索拉尼,霍博迪普迪奥伯罗瘤,fusariumoxysporum,cortiumroffsii; Geotrichum Candida和Rolfsii [11]。叶枯萎病的早期阶段的特征是形成了小的,圆形的棕色至橄榄绿色的斑点。Graham [12]报告说,这种真菌在潮湿的天气下活跃。在叶子上产生的孢子并在风和雨水中散布到附近的植物或更长的距离新花园的距离。在这两种情况下,真菌都会杀死叶子和棕色斑点的细胞。斑点扩展非常快,并产生黄色边缘,红棕色的液滴在下面的地下发育中,液滴干燥为深色颗粒。感染可能发生在叶表面的任何地方,但通常从雨水收集的边缘开始。感染了几天后,可以在该地点边缘附近看到一个白环。这是产生孢子的区域。但是,孢子在阳光下迅速干燥,到了早晨,它们会萎缩并死亡。他们只有在多云或下雨时才能活着。除了风之外,疾病的传播可能以其他方式发生,例如种植被感染的叶子的吸盘或种植材料的茎,可能会在潮湿的天气中切成薄片时在切割的末端进行茎,以便在茎上修剪茎。
摘要 水稻细菌性叶枯病 (BLB) 被认为是一种具有经济价值的疾病,因为该疾病会导致所有水稻种植区产量严重下降。病原菌水稻白斑病 (Xoo) 产生的转录激活因子样效应物 (TALE) 分子与 SWEET 基因启动子的效应物结合元件 (EBE) 结合并激活 SWEET 基因的转录,使植物易患该疾病。某些水稻基因型对 Xoo 的先天抗性是由于 SWEET 基因上游调控区中的 EBE 发生突变。CRISPR 介导的易感基因/启动子的靶向修饰是提高水稻 BLB 抗性的有效方法。本研究尝试通过在当地流行的水稻基因型 CO51 中引入 OsSWEET13 基因的 EBE 插入缺失来抑制 TALE 触发的信号传导,采用 CRISPR/Cas9 介导的基因组编辑工具,以赋予 BLB 抗性。使用未成熟胚进行农杆菌介导的转化,然后进行再生,产生了四个独立的转化事件。发现代表三个事件的五株植物在目标序列中有一个核苷酸缺失。EBE 中的这些缺失突变可能会干扰相应 TALE 的结合,从而赋予对某些 BLB 菌株的抗性。
摘要:由松针落针病菌引起的松针落针病在过去几十年中发病率和严重程度不断增加,目前已成为全球最重要的松树疾病之一。了解病原体毒力因子及其宿主靶标可以加速抗病育种。然而,由于松针落针病菌中靶向基因破坏效率低下,阻碍了这一进程,而靶向基因破坏是毒力基因表征所必需的。本文我们首次成功将 CRISPR/Cas9 基因编辑应用于松针落针病菌。使用非同源末端连接修复破坏了具有已知表型的松针落针通路调节基因 AflR,效率超过 90%。产生了具有一系列 AflR 破坏突变的转化子。通过使用特定的供体 DNA 修复模板来帮助选择未知表型的 Ds74283,我们还利用 CRISPR/Cas9 破坏了 Ds74283(一种编码分泌细胞死亡诱导物的 D. septosporum 基因)。在这种情况下,100% 的筛选转化体被鉴定为破坏体。在将 CRISPR/Cas9 确立为 D. septosporum 基因编辑工具的过程中,我们的研究可以快速追踪 D. septosporum 中候选毒力因子的功能表征,并为在其他森林病原体中开发该技术奠定基础。
EASAC 欧洲科学院科学咨询委员会 EFSA 欧洲食品安全局 ENGL 欧洲转基因生物实验室网络 ENSSER 欧洲社会和环境责任科学家网络 ERA 环境风险评估 EU 欧洲联盟 EURL 欧盟参考实验室 EU-SAGE 通过基因组编辑实现欧洲可持续农业 FAO 联合国粮食及农业组织 F2F 从农场到餐桌战略 FRM 森林繁殖材料 FSFS 可持续粮食系统框架 FTE 全职当量 GHG 温室气体 GMO 转基因生物 GM 转基因 HRI 协调风险指标 HT 耐除草剂 IIA 初始影响评估 IPR 知识产权 ISAA 国际农业生物技术应用获取服务 JRC 欧盟委员会总司联合研究中心 LCA 生命周期评估 MRIO 多区域投入产出模型 NCWS 非腹腔小麦敏感性 NGT 新基因组技术 OECD 经济合作与发展组织PLB 马铃薯晚疫病 PRM 植物生殖材料 QALY 质量调整生命年 R&D 研究与开发 RNQP 管制非检疫性害虫
执行摘要 塞内加尔于 2022 年 6 月通过了一项新的生物安全法,目前正在完成该法律实施法令的审批程序。截至本报告发布时,政府正在审议该法令。在 FAS 达喀尔调查涵盖的八个国家中,布基纳法索拥有最为完善的生物安全监管体系。 2012 年,布基纳法索通过了《生物安全法》,以促进转基因产品的研究和商业化。这促进了转基因棉花的种植批准,以及三种转基因产品的研发:抗豆荚螟(苏云金芽孢杆菌或 Bt)豇豆、转基因蚊子和利用基因组编辑技术开发出的抗细菌性枯萎病的转基因水稻品系。自 2020 年起,西非国家经济共同体 (ECOWAS) 批准了一项区域生物安全法,塞内加尔和毛里塔尼亚也通过了新的生物安全法。尼日尔于 2021 年成立了国家技术和科学委员会。尽管取得了这些积极进展,但许多西非人对生物技术的好处并不了解,公众的怀疑态度仍然相对较高。未来能否获得市场认可将取决于向公众宣传和教育生物技术产品的安全性和好处。有关 FAS 达喀尔地区生物安全法的更多信息,请参阅以下报告: