1 Bauhaus Luftfahrt eV,Willy-Messerschmitt-Str. 1,82024 Taufkirchen,德国;anais.habermann@bauhaus-luftfahrt.net(ALH);fabian.peter@bauhaus-luftfahrt.net(FP);florian.troeltsch@bauhaus-luftfahrt.net(FT)2 剑桥大学 Whittle 实验室,1 JJ Thomson Av.,剑桥 CB30DY,英国;ac2181@cam.ac.uk 3 代尔夫特理工大学航空航天工程学院,2629 代尔夫特,荷兰;b.dellacorte@tudelft.nl(BDC);m.vansluis@tudelft.nl(MvS)4 华沙理工大学动力与航空工程学院,Pl. Politechniki 1, 00-661 华沙,波兰;goraj@meil.pw.edu.pl(ZG);mkowalski@meil.pw.edu.pl(MK) 5 查尔姆斯理工大学力学与海洋科学系流体动力学系,412 96 哥德堡,瑞典;xin.zhao@chalmers.se(XZ);tomas.gronstedt@chalmers.se(TG) 6 工程高级计划,MTU Aero Engines AG,80995 慕尼黑,德国;julian.bijewitz@mtu.de 7 劳斯莱斯电气,劳斯莱斯德国有限公司,91058 埃尔朗根,德国;guido.wortmann@rolls-royce-electrical.com * 通讯地址:arne.seitz@bauhaus-luftfahrt.net
摘要:以当今天然气存储建模的盐洞中氢的大规模存储是一种在较大的功率范围内和所需时间段存储可再生能源的有前途的方法。总体气体存储的一个基本子系统是表面设施,尤其是压缩机系统。用于氢存储的压缩机系统的未来设计很大程度上取决于各自的边界条件。因此,这项工作使用德国的下萨克森州的示例分析了谷物氢(即从可再生能源产生的氢)储存洞穴存储设施的要求。在本课程中,从可再生能源的馈送时间序列中,每小时解决了一年的氢气需求。将与压缩机操作相关的注射率与当前天然气注入操作模式进行了比较。
在半导体和绝缘纳米线和薄膜中,从边界粗糙度散射发出的降低的声子镜面P在较低的导热率中起主要作用。Although the well-known Ziman formula p = exp( − 4 σ 2 q 2 x ) , where σ and q x denote the root-mean-square boundary roughness and the normal component of the incident phonon wave vector, respectively, and its variants are commonly used in the literature to estimate how roughness attenuates p , their validity and accuracy remain poorly understood, especially when the effects of mode conversion cannot be ignored.在本文中,我们通过将其预测与从原子绿色功能(AGF)模拟中计算出的P值进行比较,从而研究了Ziman公式的更通用的Oggilvy公式的准确性和有效性,以获得单层石墨烯中粗糙边界的集合。分析了声子分散,入射角,极化,模式转换和相关长度的影响。我们的结果表明,对于0 ,Ogilvy公式非常准确
准确地识别草坪边界是草坪割草机器人的可行操作的基础。当前的草坪边界识别方法依赖于预埋的电缆或通过RTK-GPS定位技术绘制边界。两种方法都容易受到定位错误和环境变化的影响。实时识别基于图像的草坪边界的实时识别可以在路径计划和对草坪割草机器人的边界识别之间形成实时闭环,从而提高了机器人工作的鲁棒性和可靠性。U-NET网络是一个简单的图像分割模型,适用于具有有限计算资源的机器人。但是,草坪的二元分割的结果通常是开放的边界线,这与医学图像中U-NET模型的某些多闭合单元的结果不同。因此,很难将U-NET模型直接应用于准确的草坪分割。考虑到草坪图像的特征和有限的计算资源,本文引入了具有通道空间注意机制和变化的损耗函数的改进的U-NET模型,这更好地解决了草坪边界识别的问题。改进模型的MDICE值为97.7%,比原始U-NET模型高约2%。
增强子-基因通讯依赖于拓扑关联域 (TAD) 和由 CCCTC 结合因子 (CTCF) 绝缘子强制执行的边界,但其潜在的结构和机制仍然存在争议。在这里,我们研究了一种通常隔离成纤维细胞生长因子 (FGF) 致癌基因但在胃肠道间质瘤 (GIST) 中被 DNA 高甲基化破坏的边界。该边界包含一系列 CTCF 位点,可强制相邻的 TAD,一个包含 FGF 基因,另一个包含 ANO1 及其推定的增强子,它们在 GIST 及其可能的起源细胞中具有特异性活性。我们表明,边界中四个 CTCF 基序的协调破坏会融合相邻的 TAD,允许 ANO1 增强子接触 FGF3,并导致其强烈诱导。高分辨率微 C 图揭示了 ANO1 增强子和 FGF3 启动子中的转录起始位点之间的特定接触,这种接触与 FGF3 诱导呈定量关系,因此接触频率的适度变化会导致表达的强烈变化,与因果关系一致。
复杂的磁力机械耦合,该耦合控制了磁性elastomers(MRES)的材料响应(MRES)需要计算工具来协助设计过程。计算模型通常基于有限元框架,这些元素框架通常简化并理想化磁性源和相关的磁性边界条件(BCS)。但是,这些简化可能会导致实际物质行为与建模的简化,即使在定性层面也是如此。在这项工作中,我们提供了一项有关磁性BCS影响的全面研究,并证明了在整个材料结构建模策略中考虑它们的重要性。为此,我们实施了一个磁性机械框架,以模拟由理想化的远场均匀磁性源,永久磁铁,线圈系统和带有两个铁杆的电磁体产生的磁场下的软磁和硬磁MR。根据所使用的磁设置,结果在计算的局部磁截图和磁场中揭示了显着的异质性。基于材料和结构贡献的详细讨论为将来的作品提供了强大,严格且必要的建模途径。
接下来,通过与(2)相似的计算来检查平均曲率,相对于正常指向附近的共包构边界,通过与(2)的计算进行检查,将证明简化为与球形拓扑处的单个共形边界的情况。We can therefore cut away an asymptotic end of M by introducing a new boundary component { Ω= ϵ } , with ϵ sufficient small so that this new boundary component satisfies, say, H > 0 with respect to the outward normal (thus H < 0 < n − 1 with respect to the inward normal).此边界组件将成为新的,截断,多种多样的边界的一部分,但仍以m表示。
在开放量子系统范式中,研究了具有反射边界的时空中真空涨落无质量标量场与循环加速原子耦合时的量子相干性动力学,推导出了系统演化的主方程。结果表明,在没有边界的情况下,真空涨落和向心加速度总是会导致量子相干性降低。然而,有了边界,标量场的量子涨落发生了改变,使得量子相干性比没有边界的情况有所增强。特别地,当原子非常靠近边界时,虽然原子仍然与环境相互作用,但它表现得就像一个封闭系统,量子相干性可以免受真空涨落标量场的影响。
组的(保守的)分量(保守的)速度正常与磁化轴(即Chern矢量方向)具有良好的符号,并且表面状态不能沿该特定方向向后散射。在2D中,Chern矢量始终沿缩小尺寸的轴固定,即与系统平面正交的固定。因此,它可以被视为标量数量:Chern数字C,其特征是2D顺式的大量拓扑。[7-9]在这种情况下,可以定义散装对应关系(SBBC)的“标量”范围,以将批量拓扑连接到边界模式的数量。[10,11]根据2D CIS中的SBBC,两个具有Chern数字C 1,C 2的系统之间的接口具有N E = | C 1 -C 2 |受保护的手性边缘状态。这意味着只有在界面上的Chern数字的连续性的情况下,手性边缘状态才能出现,即C 1≠c 2。[12–15]