区域 1:曼哈顿海岸线:始终有效 - 9 月 22 日至 28 日。从 9 月 22 日 06:00 开始,任何船只不得在东 36 街曼哈顿海岸线约 180 码至皇后区/59 街大桥曼哈顿海岸线 125 码范围内通行。商用船只在进入西水道前必须在 VHF-FM CH 12 上向纽约 VTS (VTSNY) 登记。区域 2:西水道关闭:9 月 22 日至 28 日(上午 7:00 至下午 5:00)。东河西水道东 36 街和皇后区/59 街大桥之间禁止商业或休闲交通。请注意,商业船只在进入西航道前必须通过 VHF-FM CH 12 向 VTS New York (VTSNY) 报到。纽约市环境保护局的污泥船和纽约市卫生局的驳船必须提前 24 小时与纽约州执法部门协调,否则不得通过。区域 3:全河封禁:9 月 24 日(待定)东河东 36 街和皇后区/59 街大桥之间禁止船只通行。未经美国海岸警卫队巡逻指挥官批准,任何船只不得在安全区内通过。
摘要:生成对抗网络(GAN)已转换了图像合成的领域,尤其是在引入条件gan(CGAN)(CGAN)的引入中,通过在整个生成过程中整合额外信息,从而允许更自定义的方法。模糊图像的存在可能会对图像质量产生不利影响,并可能阻碍随后的图像处理活动。为了对抗图像模糊,我们引入了一种新型的单像模糊去除技术,该技术依赖于条件生成的对抗网络(CGAN)。在这种方法中,CGAN充当基本框架,将模糊的图像作为补充条件数据并实施Lipschitz的约束。通过有条件的对抗损失,内容损失和感知损失的组合来培训网络体系结构,以纠正模糊区域并重建图像。通过实验评估,很明显,所提出的方法在删除模糊方面优于现有算法,在保持图像清晰度的同时有效地减少了模糊性。
量子状态断层扫描(QST)是中等规模量子设备中的一项具有挑战性的任务。在这里,我们将有条件的生成对抗网络(CGAN)应用于QST。在CGAN框架中,两个决斗神经网络,一个发电机和一个歧视者,从数据中学习多模式模型。我们使用自定义的神经网络层增强了CGAN,该层可将输出从任何标准的神经网络转换为物理密度矩阵。要重建密度矩阵,使用基于标准梯度的方法在数据上相互训练。我们证明,与同时加速基于投影的基于梯度和迭代的最大可能性估计相比,使用迭代步骤少的数量级和更少的数据,我们的QST-CGAN以高忠诚度重建光学量子状态。,我们还表明,如果在类似的量子状态下识别了QST-CGAN,则可以在发电机网络的单个评估中重建量子状态。
配方开发是药物开发的关键步骤。该过程需要人类的创造力、独创性和对配方开发和加工优化的深入了解,这可能非常耗时。在此,我们测试了人工智能 (AI) 为三维 (3D) 打印创建从头配方的能力。具体来说,条件生成对抗网络 (cGAN) 是一种以创造力著称的生成模型,它在由 1437 种熔融沉积成型 (FDM) 打印配方组成的数据集上进行训练,这些配方是从文献和内部数据中提取的。总共探索了 27 种不同的 cGAN 架构,它们具有不同的学习率、批量大小和隐藏层数量参数,以生成 270 种配方。通过比较 AI 生成的配方和人类生成的配方的特点,发现具有中等学习率 (10 − 4 ) 的 cGAN 可以在生成新颖性和现实性兼具的配方方面取得平衡。使用 FDM 打印机制作了四种配方,其中第一个 AI 生成的配方已成功打印。我们的研究代表了一个里程碑,突出了 AI 承担创造性任务的能力及其彻底改变药物开发过程的潜力。
摘要:本研究探讨了基于机器学习的中风图像重建在电容耦合电阻抗断层扫描中的潜力。研究了使用对抗神经网络 (cGAN) 重建的脑图像的质量。使用二维数值模拟生成监督网络训练所需的大数据。无撞击损伤和有撞击损伤的头部轴向横截面模型平均为 3 厘米厚的层,与传感电极的高度相对应。使用具有特征电参数的区域对中风进行建模,这些区域是灌注减少的组织。头部模型包括皮肤、颅骨、白质、灰质和脑脊液。在 16 电极电容式传感器模型中考虑了耦合电容。使用专用的 Matlab ECTsim 工具包来解决正向问题并模拟测量。使用数字生成的数据集训练条件生成对抗网络 (cGAN),该数据集包含健康患者和出血性或缺血性中风患者的样本。验证表明,使用监督学习和 cGAN 获得的图像质量令人满意。当图像对应于中风患者时,可以从视觉上区分,出血性中风引起的变化最为明显。继续进行图像重建以测量物理幻影是合理的。
摘要 - 频率覆盖范围图(RF地图)在无线通信方面是有效的,但是通过现场调查获得它们可能是劳动密集型,有时是不切实际的。为了应对这一挑战,我们提出了Recugan,这是一种基于生成的对抗网络(GAN)生成RF地图的方法。recugan利用信息最大化gan(Infogan)的原理来捕获RF地图的潜在特性,从而实现了无监督的分类和新的和多样的RF地图的生成。与传统方法不同,recugan不需要标记的数据或条件输入,降低复杂性,时间和成本。我们使用基于定制的梯度惩罚剂量(WGAN)功能和基于梯度的损耗功能来增强Recugan目标函数,以稳定训练和准确的地图生成。我们还提供了将多个发电机纳入recugan中的选项,从而使高分辨率的RF地图生成。通过通过实验和仿真数据进行广泛的培训证明,Recugan可以合成各种高质量的RF图,并根据RSS分布对它们进行分类。与基于UNET的有条件GAN(CGAN)相比,Recugan的平均平均百分比误差(MAPE)为1.18%,表现优于CGAN模型,CGAN模型的MAPE为2.5%。索引术语 - 生成对抗网络,RF映射,深神经网络,覆盖范围,AI。
在多光谱卫星图像中填充多云的像素对于准确的数据分析和下游应用程序至关重要,尤其是对于需要时间分配数据的任务。为了解决此问题,我们将基础元素变压器(VIT)模型的性能与基线条件生成对抗网络(CGAN)模型进行了比较,以在多型卫星图像的时间序列中缺少价值插补。我们使用现实世界云面具随机掩盖了卫星图像的时间序列,并训练每个模型以重建缺失的像素。VIT模型是根据预处理的模型微调的,而CGAN则是从头开始训练的。使用定量评估指标,例如结构相似性指数和平均绝对误差以及定性的视觉分析,我们评估插补准确性和上下文保存。
将生成模型适应持续学习(又称cgl)最近引起了对计算机视觉的极大兴趣(Huang等,2024; Belouadah等,2021)。CGL的臭名昭著的问题是灾难性的遗忘,这反映了这样一个事实,即当发电机学习新任务时,它会忘记其以前学习的任务(Parisi等,2019)。主要的CGL方法是生成性重播(GR)(Shin等,2017; Van de Ven等,2020),该方法在混合数据集中重新训练了一个新的发电机,该数据集合了从先前的生成器和当前任务的真实样品产生的伪样品。一些扩展的CGL方法仅在当前任务数据上训练发电机,例如CEWC(Seff等,2017)和Mgan(Wu等,2018; Liu等,2020)等。然而,这些方法主要在条件生成的对抗网络(CGAN)上进行了研究,并且它们对于单个增量任务是可行的,而对于多个顺序任务,CGAN可以诱导不稳定的训练,从而导致下质量的样品(CONG等,2020)。
乳腺肿瘤是乳腺癌诊断最突出的指标之一。精确的肿瘤分割对于提高乳腺癌检测的准确性至关重要。医生对 MRI 扫描的评估非常耗时,需要大量的人力和专业知识。此外,传统的医学分割方法通常需要先验信息或手动特征提取,导致诊断具有主观性。因此,开发一种自动图像分割方法对于临床应用至关重要。这项工作提出了 BTS-GAN,一种在磁共振成像 (MRI) 扫描中使用条件 GAN (cGAN) 的自动乳腺肿瘤分割过程。首先,我们使用编码器-解码器深度网络作为生成器,并在编码器和解码器之间使用跳跃连接,以提高定位效率。其次,我们利用并行扩张卷积 (PDC) 模块来保留各种大小肿块的特征并有效提取有关肿块边缘和内部纹理的信息。第三,在 cGAN 的损失函数中加入了额外的分类相关约束,以缓解基于分类的图像到图像 (I2I) 翻译任务中难以收敛的挑战。我们提出的模型的生成器端学习检测肿瘤并构建二值掩码,而鉴别器学习区分地面真实和合成掩码,从而驱动生成器生成尽可能真实的掩码。实验结果表明,我们的 BTS-GAN 对于乳腺肿瘤分割更有效、更可靠,并且在公开可用的 RIDER 乳腺癌 MRI 数据集上的 IoU 和 Dice 系数方面优于其他分割技术。我们提出的模型分别实现了 77% 和 85% 的平均 IoU 和 Dice 得分。2022 作者。由 Elsevier BV 代表卡拉布克大学出版 这是一篇根据 CC BY-NC-ND 许可 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 的开放获取文章。
使用对抗性的条件变量自动编码器Keisuke Kojimaa,Toshiaki Koike-Akinob,Ye Wangb,Minwoo Jungb,C,C和Matthew BrandB BrandB Aboston Quantum Photonics Llc,588 Bost Post rd#315, Bmitsubishi电力研究实验室,201号百老汇,马萨诸塞州剑桥市02139,美国cdepartment of Adryics,康奈尔大学,纽约州伊萨卡,纽约州14853,美国。abract用于元设计和元城的逆设计,已经广泛探索了生成的深度学习。大多数作品都是基于条件生成的对抗网络(CGAN)及其变体,但是,选择适当的超级参数以进行有效的训练很具有挑战性。另一种方法是一种对抗性的条件变化Au-Toencoder(A-CVAE),尚未探索Metagrats和MetaSurfaces的逆设计,尽管最近它对Planar Nananophotonic vaveguide wavelguide Power/波长偏开剂的平面设计表现出了很大的希望。在本文中,我们讨论了如何将A-CVAE应用于二维自由形式的Metagratings,包括培训数据集准备,网络的构建,培训技术以及反向设计的元群的性能。