摘要:医学成像中深度学习的快速发展显着增强了人工智能的能力,同时引入了挑战,包括需要大量培训数据以及标记和分割的劳动密集型任务。生成的对抗网络(GAN)已作为解决方案出现,为数据增强提供合成图像生成,并通过CGAN,Cyclegan和StyleGan等模型来简化医疗图像处理任务。这些创新不仅提高了图像增强,重建和分割的效率,而且还为无监督的异常检测铺平了道路,从而显着降低了对标记数据集的依赖。我们对医学成像中GAN的调查涉及其各种体系结构,选择适当的GAN模型的考虑以及模型培训和绩效评估的细微差别。本文旨在为盖恩技术新手提供透彻理解的放射科医生,通过使用Cyclegan和Pixel2Style2pixel(PSP)commbined styleth的样式进行两个说明性示例,通过对脑成像中的gans进行实际应用和评估。它对医学成像研究中gan的变革潜力进行了全面的探索。最终,本文努力使放射科医生提供有效利用gan的知识,从而鼓励该领域的进一步研究和应用。
摘要:当前的停车援助和监测系统合成鸟类视图(BEV)图像,以提高驱动程序的可见度。这些BEV图像是使用称为“逆透视图”(IPM)的流行透视转换创建的,该转换将其投射到FishEye摄像头捕获的环绕视图图像的像素上。然而,IPM在准确地表示高度和接缝的对象方面面临挑战,因为它依赖于刚性几何变换,因此将预计的环绕视图缝合在一起。为了解决这些局限性,我们提出了Bevgan,这是一种新型的几何形状引导的条件生成副本网络(CGAN)模型,将多尺度鉴别器与基于变形金刚的生成器相结合,该生成器利用Fisheye摄像机校准和注意力机械机制,以隐含地模拟该视图之间的几个几何形式的变换。实验结果表明,在图像保真度和质量方面,Bevgan的表现优于IPM和最先进的跨视图生成方法。与IPM相比,我们报告了 + 6的改进。在PSNR上的2 dB,MS-SSIM上的 + 170%在描绘停车场和驾驶场景的合成数据集上进行评估。此外,还通过零射推理证明了Bevgan在现实世界中的图像上的概括能力。
工程设计方法旨在生成满足所需性能要求的新设计。过去的工作已直接将有条件的生成对抗网(CGAN)引入了这一领域,并在单点设计问题中获得了有希望的结果(一个在一个工作条件下的性能要求)。但是,这些方法假设性能要求分布在分类空间中,这在这些scenarios中是不合理的。尽管连续有条件的gan(CCGANS)引入了阴性风险最小化(VRM),以减少该假设造成的绩效损失,但它们仍然面临以下挑战:1)CCGANS无法处理多点设计问题(在多个工作条件下的多个绩效要求)。2)由于阴道损失的高计算复合物,他们的训练过程是耗时的。为了解决这些问题,提出了一个连续的条件扩散概率模型(CCDPM),第一次将扩散模型引入工程设计区域,将VRM引入扩散模型。ccdpm采用一种称为多点设计抽样的新型抽样方法来处理多点设计概率。此外,在CCDPM的训练过程中,使用K-D树来缩短替代损失的计算时间,并将训练过程加快了2-300次。关于合成问题和三个实现世界设计问题的实验表明,CCDPM的表现优于最先进的GAN模型。
于2023年12月20日收到; 2024年3月27日接受; 2024年4月17日出版作者分支:1 IRD,索邦大学,Ummisco,32 Avenue Henry Varagnat,Bondy Cedex,法国; 2 Sorbonne University,Inserm,Nutriomics,91 BVD de L'Hopital,法国75013,法国。*信函:加斯帕·罗伊(Gaspar Roy),加斯帕(Gaspar。 Jean-Daniel Zucker,Jean-Daniel。Zucker@ird。FR关键字:微生物组;宏基因组学;深度学习;神经网络;嵌入; binning;疾病预测。缩写:ASV,扩增子序列变体; CAE,卷积自动编码器; CGAN,有条件的生成对抗网络; CNN,卷积神经网络; Dae,Denoing AutoCododer; DL,深度学习; FFN,馈送网络; GAN,生成对抗网络;它的内部转录垫片; LSTM,长期记忆; MAG,元基因组组装基因组; MGS,宏基因组; MIL,多个实例学习; ML,机器学习; MLP,多层感知器; NGS,下一代测序; NLP,自然语言处理; NN,神经网络; RNN,经常性神经网络; SAE,稀疏的自动编码器; Sota,艺术状态; SVM,支持向量机; TNF,四核苷酸频率; Vae,各种自动编码器; WGS,全基因组测序。数据语句:文章或通过补充数据文件中提供了所有支持数据,代码和协议。补充材料可与本文的在线版本一起使用。001231©2024作者
swath(1.4 km)。此外,凭借其太阳同步轨道,Cloudsat在同一当地时间经过赤道,将观察结果限制为在一天中的特定时间内“快照”。相比之下,成像仪器在更广泛的视野和更高的时间分辨率上进行测量,但它们仅提供“自上而下”的视角,并且不会直接测量大气曲线。但是,将不同光谱通道中的图像与大气轮廓重叠的测量结合在一起,可以推断雷达轨道以外的垂直轮廓。Barker等。[3,4]通过强度像素匹配,开发了一种将地球保健曲线扩展到3D的算法。最近的工作[5,6,7]使用了基于ML的方法(例如U-NET,CGAN,线性回归,随机森林,XGBoost),以从“自上而下”的测量中估算垂直云信息。特别是Brüning等人。[5]从MeteoSat第二代(MSG)旋转增强的可见和红外成像仪(Seviri)的卫星图像进行了训练,并具有Cloudsat Cloud Cloud Radar(CPR)反射率,重建3D云结构。对于所有方法,模型训练需要数据源之间的精确空间和时间对齐。由于雷达卫星的立交桥有限(图1b),轮廓测量值少于可用的图像(为了进行比较,MSG/Seviri每年产生40 TB的图像数据,而CPR每年产生150 GB)。然后,我们使用匹配的图像profile对进行了3D云重建任务的预训练模型。自我监督学习(SSL)的最新进展(SSL)在大型未标记数据集的训练前模型中表现出了希望,但它们在云研究中的应用仍然不足。在这项工作中,我们将SSL方法(MAE,MAE,[8])和GeoSpatemance Authewawe AutoCododers(基于Satmae,[9])应用于2010年的多光谱MSG/SEVIRI数据。我们的结果表明,预训练始终提高此任务的性能,尤其是在热带对流带等复杂地区。具有地理空间意识的预训练模型(即时间和坐标编码),尤其是胜过随机初始化的网络和更简单的U-NET体系结构,从而改善了重建结果。该代码将在接受后提供。
为了最大程度地减少与强制施用相关的纵向成像和潜在风险的辐射暴露,采取了二维(2D)非对比度轴向轴向单板CT CT,而不是在临床实践中常见的三维(3D)体积CT。然而,很难在纵向成像中找到相同的横截面位置,因此在不同年内捕获的器官和组织存在实质性变化,如图1。在2D腹部切片中扫描的器官和组织与身体成分措施密切相关。因此,增加的位置差异可以准确地分析身体组成的挑战。尽管有这个问题,但尚未提出任何方法来解决2D切片中位置差异的问题。我们的目标是减少位置方差在人体组成分析中的影响,以促进更精确的纵向解释。一个主要的挑战是,在不同年内进行的扫描之间的距离是未知的,因为该切片可以在任何腹部区域进行。图像注册是在其他情况下用于纠正姿势或位置错误的常用技术。但是,这种方法不适合解决2D采集中的平面运动,其中一种扫描中出现的组织/器官可能不会出现在另一种扫描中。基于参考。13,图像协调方法分为两个主要组:深度学习和统计方法。值得注意的统计方法包括战斗14及其变体,15-17 Convbat,18和贝叶斯因子回归。19然而,与生成模型不同,统计方法通常缺乏对我们方案至关重要的生成能力。基于深度学习的现代生成模型最近在生成和重建高质量和现实的图像方面取得了重大成功。20 - 26生成建模的基本概念是训练生成模型以学习分布,以便生成的样品 ^ x〜pdð ^xÞ来自与训练数据分布x〜pdðxÞ的分布相同。27通过学习输入和目标切片之间的联合分布,这些模型可以有效地解决注册的局限性。变化自动编码器(VAE),28是一种生成模型,由编码器和解码器组成。编码器将输入编码为可解释的潜在分布,解码器将潜在分布的样本解码为新数据。生成对抗网络(GAN)20是另一种类型的生成模型,其中包含两个子模型,一个生成新数据的生成器模型和一个区分实际图像和生成图像的歧视器。通过玩这个两人Min-Max游戏,Gans可以生成逼真的图像。Vaegan 29将GAN纳入VAE框架中,以创建更好的合成图像。通过使用歧视器来区分真实图像和生成的图像,Vaegan可以比传统的VAE模型产生更真实和高质量的图像。但是,原始的vaes和gan遭受了缺乏对产生图像的控制的局限性。有条件的GAN(CGAN)30和CONDINATION VAE(CVAE)31解决了此问题,该问题允许生成具有条件的特定图像,从而对生成的输出提供了更多控制。但是,这些条件方法中的大多数都需要特定的目标信息,例如目标类,语义图或热图,在测试阶段32作为条件,这在我们的情况下是不可行的,因为我们没有任何可用的直接目标信息。