我们试图识别和定量分析草酸钙(CAOX)肾结石在微米的顺序上,重点是对草酸钙一水合物(COM)和二水合物(COD)的定量鉴定。我们进行了傅立叶变换红外(FTIR)光谱,粉末X射线衍射(PXRD)和微焦点X射线计算机计算的Tomogra-Phy测量(微孔X射线CT),并比较其结果。集中于780 cm-1峰的FTIR光谱的扩展分析使得对COM/COD比率进行可靠的分析成为可能。,我们通过将微观FTIR应用于肾结石的薄部分,并通过将Microtocus X射线CT系统应用于批量样品,从而成功地分析了50-μm2区域的COM/ COD。基于微采样的PXRD测量结果,薄节的微观FTIR分析以及微孔X射线CT系统观察散装肾结石样品的结果大致一致,表明所有三种方法都可以在智力上使用。这种定量分析方法评估了保留的石头表面上的详细CAOX组成,并提供了有关石材形成过程的信息。此信息阐明了哪些晶体相核的位置,晶体的生长方式以及从亚稳态相位到稳定相的过渡如何进行。相变会影响肾结石的生长速率和硬度,因此为肾结石形成过程提供了关键的线索。
钙成像因其能够记录大量神经元群的能力而被广泛采用。为了总结神经活动的时间过程,降维方法可能特别有用,这种方法已广泛应用于群体脉冲活动。然而,目前尚不清楚应用于脉冲活动的降维方法是否适用于钙成像。因此,我们根据标准降维方法对设计选择进行了系统研究。我们还开发了一种同时执行反卷积和降维的方法(钙成像线性动态系统,CILDS)。CILDS 最准确地从模拟钙成像数据中恢复了单次试验、低维时间过程。CILDS 在斑马鱼幼虫和小鼠的钙成像记录方面也优于其他方法。更广泛地说,这项研究为在不同的实验环境中使用降维来总结大量神经元群的钙成像记录奠定了基础。
成人心脏发展肥大,以减轻心室壁压力并响应增加的工作量而保持心脏功能。尽管病理肥大通常会导致心力衰竭,但生理肥大可能是受保护的。心脏特异性的过表达脂质 - 滴头蛋白peripin 5(PLIN5)促进了心脏肥大,但目前尚不清楚这种反应是否有益。我们分析了人类左心室的RNA测序数据,并表明CAR-DIAC PLIN5表达与心脏收缩 - 相关过程的上调相关。为了研究心脏PLIN5水平升高如何影响心脏收缩性,我们用PLIN5(MHC-PLIN5小鼠)的心脏特异性过表达产生了小鼠。这些显示的小鼠左心室质量和心肌细胞大小增加但心脏功能保留。定量蛋白质组学鉴定出肌质/内质网Ca 2+ ATPase 2(SERCA2)为PLIN5相互作用蛋白。原位接近连接测定进一步确认了PLIN5/SERCA2相互作用。实时成像在收缩期间在细胞内Ca 2+释放中表现出不折痕,在松弛过程中去除Ca 2+,而MHC-PLIN5与WT心肌细胞中的SERCA2功能。这些结果确定了PLIN5通过增强的Ca 2+信号传导改善心脏收缩性的作用。
人类诱导的多能干细胞心肌细胞(HIPSC-CMS)基于具有显着影响的心血管研究的开创性技术。他们为各种应用提供了可再生的人类心肌细胞来源,包括体外疾病建模和药物毒性测试。心脏钙调节在心肌细胞中起着至关重要的作用,并且在心血管疾病中通常失调。由于人类心脏组织的可用性有限,钙处理及其调控最常在动物模型的背景下进行研究。HIPSC-CM可以为人类生理和病理生理学提供独特的见解,尽管与成人心肌细胞相比,剩余的限制是这些细胞的相对不成熟,因此,该领域是迅速发展的技术来提高hipsc-CM的成熟度,进一步确立其在心血管研究中的地位。这篇评论介绍了心肌细胞钙循环和HIPSC技术的基础,并将详细描述我们当前对HIPSC-CMS钙的理解。
阿片类药物引起的痛觉过敏 过去几十年来,阿片类药物在手术室和诊所的使用量稳步增长,使该类药物成为美国最常用的处方药之一。最常用的注射全身麻醉药不能提供外科手术所需的镇痛水平,因此需要在围手术期使用其他药物,如阿片类镇痛药。具体而言,在手术室中,最好使用药代动力学快的阿片类药物,如瑞芬太尼,与静脉麻醉药(如丙泊酚)结合使用,因为它们可以滴定到所需的镇痛水平和心血管参数。此外,由于瑞芬太尼在输注完成后会迅速从血浆中消除,因此即使输注时间很长,其效果也会很快消散。尽管阿片类药物可有效治疗与外科手术相关的急性疼痛,但它们对慢性疼痛疾病只有部分效果,并且它们的使用
为了成功适应环境,动物会不断调整自己的行为,确保其适应当前环境。它们的神经系统必须快速处理传入的刺激,以区分相关信息和不相关信息,从而实现集中注意力并支持记忆形成和行为调节等更高级的执行功能。感觉过滤在一定程度上由习惯化这个基本且保守的过程介导 [1]。习惯化是所有动物都表现出的最简单的非联想学习形式,其定义为对重复的、不显著的刺激的反应性逐渐下降 [2],并且不是由于感觉适应或运动疲劳 [3]。值得注意的是,已有研究表明,动物也能对威胁性和潜在致命的刺激形成习惯,并以此作为修改其行为策略以避免危险刺激的一种手段 [4]。习惯化的行为参数和细胞机制受突触可塑性机制控制,这种机制通过改变神经递质信号来调节兴奋和抑制的平衡[5-9],但我们对介导习惯化的关键基因的了解并不完整。过滤机制受损是许多常见神经系统疾病的标志,因此习惯化缺陷已被用作诊断工具[10]。习惯化缺陷与自闭症谱系障碍(ASD)[11-13]、脆性X 综合征[14]、精神分裂症[15]、亨廷顿氏病[16]、注意力缺陷多动障碍(ADHD)[17]、帕金森病[18]、图雷特综合征[19]和偏头痛[20]有关。剖析调节感觉过滤的潜在遗传机制可帮助我们了解疾病的病因、确定疾病的遗传易感性以及找到潜在的治疗靶点。了解习惯化的遗传、细胞和行为方面对于理解正常神经回路如何处理感觉信息至关重要。斑马鱼可以表现出受经验调节的感觉诱发运动行为(到受精后五天(dpf)为止)。声学刺激会在斑马鱼身上引发两种不同的运动反应之一:短延迟 C 形弯曲(SLC),通常是对高强度刺激的反应,以及长延迟 C 形弯曲(LLC),通常是对低强度刺激的反应 [ 21 ]。这些行为由简单、特征明确的回路驱动,可进行可视化和基因操作 [ 22 ]。 SLC 是由激活两个双侧 Mauthner 后脑网状脊髓神经元之一触发的,这两个神经元是听觉惊吓反应 (ASR) 的指挥神经元 [ 23 ]。Mauthner 神经元在功能上类似于尾桥脑网状核 (PnC) 的巨型神经元,这些神经元从耳蜗神经接收输入,并输出到脊髓中的运动神经元,从而驱动哺乳动物的惊吓反应 [ 24 – 26 ]。虽然斑马鱼的神经回路比哺乳动物的简单,但正是这种简单性使其成为研究感觉过滤背后的遗传、细胞和行为机制的有用工具。为了确定对介导习惯化学习很重要的基因,我们将全基因组正向遗传筛选 [ 27 ] 与高通量平台相结合,以进行无偏的听觉惊吓分析 [ 28 ]。这种方法产生了几个听觉惊吓习惯化所需的基因,包括棕榈酰转移酶亨廷顿相互作用蛋白 14 (hip14) [ 29 ],
由于地壳中锂的含量有限(<0.1 pg kg 1),人们非常担心电网储能和电动汽车所需的锂资源可能不足。4,5 为了超越锂离子电池,包括 Na、K、Mg 和 Ca 在内的丰富的碱金属和碱土金属元素已被视为开发下一代可充电电池的有吸引力的阳极材料。4 – 8 多价镁电池在过去二十年中受到了越来越多的研究关注。镁电池的电解质研究最为丰富,包括多种多样的 Mg – Cl 复合电解质和先进的无 Cl 镁电解质设计,以及对电解质溶液和界面化学的深入了解。7,9 然而,由于 Mg 2+ 离子的强路易斯酸性(以离子电负性表示)(47.6 eV,图 1),10
有人提出在与碳捕获与储存兼容的运行条件下,注入蒸汽来减缓钙循环 (CaL) 过程中 CaO 反应性的衰减。然而,目前尚不清楚蒸汽所带来的明显优势是否能在将 CaL 工艺整合为聚光太阳能发电厂 (CaL-CSP) 中的热化学储能系统所需的不同运行条件下保持。在这里,我们研究了蒸汽在与 CaL-CSP 方案兼容的条件下的影响,并评估了仅在一个阶段注入蒸汽(煅烧或碳化)时的影响,以及蒸汽在整个循环中存在时的影响。这里介绍的结果表明,蒸汽可提高 CO 2 闭环中 CaO 多循环的性能,以达到与惰性气体下中等温度下相似的残余转化值。此外,还发现颗粒越大,多循环活性的增强越明显。
Lester Ingber 教授,博士 摘要:背景:自 1980 年左右以来,大脑皮层相互作用的模型——大脑皮层相互作用的统计力学 (SMNI) 已成功计算了许多实验现象,包括使用重要性采样代码自适应模拟退火 (ASA) 拟合注意力任务中的脑电图 (EEG) 数据。SMNI 模型是在经典路径积分的背景下开发的,它提供了直观的见解以及直接的数值优势,例如,使用有效作用作为数据参数拟合的成本/目标函数。目标:先前的作者已经将情感 EEG 数据拟合到神经网络模型中。该项目旨在使用基于物理和生物学的模型来拟合相同的数据。先前的研究表明,注意力状态的 EEG 拟合有所改善;该项目将这些方法扩展到情感状态。方法:路径积分用于经典和量子背景。经典路径积分用于定义成本/目标函数以拟合数据,量子路径积分用于推导在磁矢量势存在下 Ca 离子波的闭式解析表达式,该磁矢量势由高度同步的神经元放电产生,从而产生 EEG。ASA 用于拟合 EEG 数据。结果:该研究的数学物理和计算机部分是成功的,因为使用这些模型拟合 EEG 数据的成本/目标函数与其他作者发表的先前研究一致。但是,由于 SMNI 模型包括这些量子效应,这是继续研究这些问题的另一个原因。这里的结果是一致的,而不是比以前使用神经网络模型的工作更好,尽管这里只使用了一个参数,而不是以前在这些数据上使用的多个过滤器和内核。结论:虽然这些量子效应具有高度推测性,但明确的计算表明它们与实验数据一致,至少到目前为止是这样。当前的超级计算机项目将此模型扩展到情感/情绪数据。几位作者在单个电极位置使用神经网络方法的结果显示出一定的预测能力;这里给出的结果与其他结果一致。然而,由于 SMNI 模型包括这些量子效应,这是继续研究这些问题的另一个原因。关键词:量子力学;路径积分;重要性抽样;神经科学 2022 年 1 月 11 日收到;2022 年 1 月 23 日修订;2022 年 1 月 25 日接受 © 作者 2022。在 www.questjournals.org 上以开放获取方式出版
尽管有这些重要的进步,但仍存在关键的需求,将这些新技术以外的新技术部署到与人类相关的大动物模型物种中(O'Shea等,2017)。非人类灵长类动物(NHP)是在这方面的特别重要的模型物种,具有大脑结构和功能以及复杂的认知和行为能力,与人类高度相似(Capitanio和Emborg,2008; Phillips et al。,2014; Roelfsema; Roelfsema and Treue and Treue,2014)。此外,基因组编辑的最新进展正在迅速使NHPS可行的人类疾病遗传模型(Sato和Sasaki,2018年)。因此,最新的光学技术从啮齿动物转移到行为NHP的转移有望在阐明健康和异常人类行为的临床相关神经活动中发挥关键作用。成功地应用钙成像在NHP中的开发很慢。特别是,使用常规病毒表达NHP脑中遗传编码的钙指标的困难(Sadakane等,2015a)和由较大体积NHP大脑运动引起的成像伪像(Trautmann等人,2021年; Choi等,2018,2018年)已证明最具挑战性。此外,与啮齿动物相比,NHP具有更成熟的免疫系统,需要复杂的手术策略和神经植入物硬件,并且在可用于试验和错误技术开发的动物总数上存在局限性(Phillips等人,2014年)。