整流桥由二极管D2、D3、D4、D5组成。经滤波电容C4、直流电压TS、初级开关管Q1、储能电容C4,反激式功率变换器将能量经变压器T1、二极管D5、电感L1和电容C2整流滤波后输出直流电压。变换器工作时,通过改变PWM的占空比,来调节输出电压[2][3]。电源正常工作时,C4中流过交流纹波电流,从而形成交流纹波电压。当发生过流或短路时,电容电压处的电压纹波会急剧增大。根据开关功率变换器的特性,可确定电源的工作状态,并根据交流分量增量的大小来设置不同交流分量保护点的高低,完成短路保护电路的设计[4][5][6]。
电荷尺度数字对模拟转换器的准确性和性能(DACS)(图1(a))取决于二进制加权电容器比率,这可能会受到MIS匹配的干扰。关键因素是电容器阵列中单位电容器C U的选择。由于n位二进制加权DAC使用2 N单位电容器来提供所需的电容器比率,其面积,总电容和功率用n呈指数增加。选择较小的C u会降低阵列的大小并减少沉降时间,这是因为电容器充电/排放电容器的较低时间常数。但是,较小的C U导致更大的随机不匹配和线性问题。在文献中,经常在经验上选择C U。在[1]中尝试确定最小C U的系统方法,但模型是建立在较旧的散装技术节点上的,而忽略了电线寄生虫和随机变化的影响;特别是在FinFET节点中,这些效果可能很重要。此外,它们无视对关键DAC线性指标的影响。在[2]中,研究了寄生能力的某些组成部分对增益误差和热噪声的影响,但是该工作并未探索一种发现C U的方法。我们提出了一种系统的方法,用于查找最佳的单位电容,C u,该方法考虑了系统的和随机变化,电线寄生虫,频噪声,热噪声和电路级性能指标,包括线性。
1。Introduction .................................................................................................................................................................... 2 2.emi优化的设计....................................................................................................................................................................................................................................................................................... 2 2.1。CA-IS3115AW General Description ....................................................................................................................................... 2 2.2.EMI Filter and Component Placement .................................................................................................................................. 3 2.2.1.Decoupling Capacitor Placement ......................................................................................................................3 2.2.2.Y-capacitor ........................................................................................................................................................4 2.2.3.Ferrite Bead/Common-mode Inductor/Differential-mode Inductor ................................................................4 2.2.4.Building the edge guarding ...............................................................................................................................5 3.CA-IS3115AW Reference Designs ................................................................................................................................... 6 3.1.CA-IS3115AW Reference Design Schematic (2-layer PCB) ................................................................................8 3.2.3.Reference Design Overview .................................................................................................................................................. 6 3.2.2-layer PCB with CM-choke on Board ................................................................................................................................... 6 3.2.1.PCB Layout Procedure .......................................................................................................................................6 3.2.2.Reference Design Test Result for the 2-layer PCB .............................................................................................8 3.3.4-Layer PCB with CM-choke on Board ................................................................................................................................. 10 3.3.1.PCB Layout Procedure .....................................................................................................................................10 3.3.2.CA-IS3115AW Reference Design Schematic(4-layer PCB) ...............................................................................12 3.3.3.Reference Design Test Result for the 4-layer PCB ...........................................................................................12 3.4.4-Layer PCB without CM-choke on Board ........................................................................................................................... 14 3.4.1.PCB Layout Procedure .....................................................................................................................................14 3.4.2.CA-IS3115AW Reference Design Schematic (4-layer PCB) ..............................................................................16 3.4.3.Reference Design Test Result for the 4-layer PCB ...........................................................................................16 4.Revision History ............................................................................................................................................................ 18 5.Important Statement .................................................................................................................................................... 18
摘要。本文提出了详细的技术建议,以提高农业工业复合物的电气设备的可靠性。对已经知道的测量电容的方法进行了分析,并证明有必要从工作电路中撤回电容器,以确定电容的足够准确性。显示了开发用于测量电容的方法的紧迫性,而无需从工作电路中卸下电容器以减少平均恢复时间。理论基础是测量电容的可能性,而不会从平滑滤波器模式下从工作电路中撤回电容器;详细介绍了电容测量设备的结构电路,并描述了其操作的原理;详细阐述了通过给定设备的测量方法;证实了创建和维护设备测量模式的条件。在编程的软件包Mathcad以及设备的主要块的电动型号的帮助下,检查了接收结果的有效性。获得的结果可用于测量维护和电气装修过程中电解电容器的电容,也可以促进其可靠性。
即使走线电气长度不长,R41-R44 也可用作阻尼电阻(27-51 欧姆),通过减少由杂散电感和电容引起的过冲和振铃来改善信号完整性。无论哪种情况,R41-R44 都应尽可能靠近驱动走线(信号源)的设备。如果电容器和麦克风之间的走线电感最小化,去耦电容器(C32-33、C34-35)最有效。这可以通过使用短而宽的走线来实现。如果在麦克风下方使用接地平面,则使用过孔将电容器接地垫直接连接到平面,而无需使用任何走线。
以前,我们已经证明了化学势力的梯度是由许多电子波函数的浆果连接的时间成分引起的。我们将证明IT在这项工作中金属中的电子促进问题中的重要性。我们首先重新审视了研究充分的耗散问题,在连接到电池的金属电线中用电流加热。众所周知,Poynting的定理以一种奇怪的方式解释了它:焦耳加热的能量从电线外部作为辐射进入。我们表明,如果电流的产生是由于电池连接在电线内产生的化学势梯度引起的,则给出明智的解释。接下来,我们证明了它在电容器问题的放电中的重要性,而电容器起着电池的作用;以及通过约瑟夫森交界处问题进行的tuneling超电流,其中约瑟夫森关系的原始派生不包括电容器的贡献固有地存在于交界处。最后,我们认为化学势梯度力中包含的浆果连接的时间成分的量规波动解释了在奇怪金属中观察到的普兰克耗散。
即使走线电气长度不长,R41-R44 也可用作阻尼电阻(27-51 欧姆),通过减少由杂散电感和电容引起的过冲和振铃来改善信号完整性。无论哪种情况,R41-R44 都应尽可能靠近驱动走线(信号源)的设备。如果电容器和麦克风之间的走线电感最小化,去耦电容器(C32-33、C34-35)最有效。这可以通过使用短而宽的走线来实现。如果在麦克风下方使用接地平面,则使用过孔将电容器接地垫直接连接到平面,而无需使用任何走线。
特性 ISO15693 标准:完全符合 工作频率:13.56MHz ± 7KHz(ISM,全球范围内可免费获得许可证) 2.4K 位 EEPROM,分为 38 个字,每个字为 64 位 64 位唯一标识符 (UID) 锁定功能将 EEPROM 字转换为只读 支持应用字段标识符 (AFI) EEPROM 写操作的电源检查 芯片上集成的谐振电容 28pF 或 95pF(可通过掩模选项选择) 无需外部电源缓冲电容 -40 至 +85 ° C 温度范围 非常低功耗(无需电池) 针对倒装芯片组装优化的键合焊盘