注:*财务分析假设运营期/合同协议为 25 年。财务分析基于以下原则:设施所有者和运营商之间签订简单的“准入协议”,将授予后者运营权并向用户收取费用,而无需支付场地费用或支付象征性费用。**虽然假设的服务费水平因设施中的床位数量而异,但财务分析使用的假设如下:一级护理 - 每张床每月 28 美元,二级护理 - 每张床每月 138 美元,三级护理 - 每张床每月 207 美元。更多详细信息可在此处找到:亚洲城市发展倡议和宜昌市政府的预可行性研究。
○ 模型 1:原始 InceptionV3 ○ 模型 2:冻结主体 + 自定义顶层 ○ 模型 3:自定义顶层 + 微调完整模型
令人兴奋的新药、新技术和改进的工作方式开始被引入,它们挽救和延长了我们所爱之人的寿命,或极大地改善了我们的生活质量。NHS Wales 应用程序及其配套网站是改变患者与威尔士健康和社会护理服务互动方式的一个例子。通过该应用程序,在 GP 注册的患者可以访问他们的健康记录摘要并查看他们的健康史、订购重复处方、查看过去的 GP 处方以及预订、查看和取消与执业人员的预约。该应用程序还将提供更大的候补名单透明度,促进患者与二级护理临床医生在手术前后的互动,并引入用于数字化信件和通信的混合邮件解决方案。
人工智能和机器学习 (AI/ML) 算法在医疗保健领域的发展日渐成熟,用于诊断和治疗各种医疗状况 ( 1 )。然而,尽管此类系统技术实力雄厚,但它们的采用却一直充满挑战,它们是否能真正改善医疗保健以及在多大程度上改善医疗保健仍有待观察。一个主要原因是,基于 AI/ML 的医疗设备的有效性在很大程度上取决于其用户的行为特征,例如,用户往往容易受到有据可查的偏见或算法厌恶的影响 ( 2 )。许多利益相关者越来越多地将预测算法所谓的黑箱性质视为用户持怀疑态度、缺乏信任和接受缓慢的核心原因 ( 3, 4 )。因此,立法者一直在朝着要求提供黑箱算法决策解释的方向发展 (5) 。事实上,学术界、政府和民间社会团体几乎一致支持可解释的 AI/ML。许多人被这种方法吸引,因为它既能利用不可解释的人工智能/机器学习(如深度学习或神经网络)的准确性优势,又能支持透明度、信任和采用。我们认为,这种共识至少在应用于医疗保健领域时,既夸大了要求黑盒算法可解释的好处,又低估了其弊端。
在撰写本文时,英国脱欧后,英国医疗器械监管正处于过渡阶段。它仍受《2002 年医疗器械法规》(经修订)的约束,该法规将相关欧盟指令转化为英国法律。新的英国监管制度最初是通过《2021 年药品和医疗器械法案》引入的,目的是利用这些权力在 2023 年 7 月 1 日制定次级立法。17 然而,英国政府推迟了这一期限,并延长了之前欧盟标准的适用时间。根据目前的做法,医疗器械根据 CE 标志(欧盟监管标志)被接受进入英国市场,直到 2028 年或 2030 年,具体取决于设备的具体类型。18
交互式聊天机器人应用程序是现代时代的最新发明。医疗保健行业与人际交往密切相关,似乎像聊天机器人这样的对话式人工智能应用程序更为普遍。聊天机器人的响应方式应该让用户感觉自己正在与真人交谈。聊天机器人根据清晰的数据集和可持续的后端逻辑进行响应以生成结果。医疗聊天机器人通过以类似人类的方式与用户互动,简化了医疗保健提供者的工作并有助于提高他们的绩效。医疗保健领域的聊天机器人可能具有为患者提供即时医疗信息、在疾病出现的第一个迹象时推荐诊断或将患者与社区中合适的医疗保健提供者 (HCP) 联系起来的潜力。[3]
摘要背景:在人工智能 (AI) 应用于医疗保健领域时,可解释性是最受争议的话题之一。尽管人工智能驱动的系统已被证明在某些分析任务中表现优于人类,但缺乏可解释性仍然引发批评。然而,可解释性不是一个纯粹的技术问题,相反,它引发了一系列需要彻底探索的医学、法律、伦理和社会问题。本文对可解释性在医学人工智能中的作用进行了全面评估,并对可解释性对于将人工智能驱动的工具应用于临床实践的意义进行了伦理评估。方法:以基于人工智能的临床决策支持系统为例,我们采用多学科方法从技术、法律、医学和患者的角度分析了可解释性对医学人工智能的相关性。基于这一概念分析的结果,我们随后进行了伦理评估,使用 Beauchamp 和 Childress 的“生物医学伦理原则”(自主、仁慈、不伤害和正义)作为分析框架,以确定医疗 AI 中可解释性的必要性。结果:每个领域都强调了一组不同的核心考虑因素和价值观,这些因素与理解可解释性在临床实践中的作用有关。从技术角度来看,可解释性必须从如何实现和从发展角度来看有什么好处两个方面来考虑。从法律角度来看,我们将知情同意、医疗器械认证和批准以及责任确定为可解释性的核心接触点。医学和患者的观点都强调了考虑人类行为者和医疗 AI 之间相互作用的重要性。我们得出的结论是,在临床决策支持系统中忽略可解释性会对医学的核心伦理价值观构成威胁,并可能对个人和公共健康产生不利影响。结论:为了确保医疗 AI 兑现其承诺,需要让开发人员、医疗保健专业人员和立法者意识到医疗 AI 中不透明算法的挑战和局限性,并促进多学科合作。关键词:人工智能、机器学习、可解释性、可解释性、临床决策支持