Nicotiana Benthamiana是一种在植物生物学和生物技术中广泛采用的模型生物。自2012年最初发行以来,其基因组研究已落后。为了进一步提高其实用性,我们生成和相位的同种异体二磷酸n. benthamiana的完整的2.85 GB基因组组装,所有19个centromeres和38个端粒完全分析。我们发现,尽管甲酸溶剂粒粒子被TY3/GYPSY逆转录座子广泛主导,但基于卫星的centromeres在N. Benthamiana中令人惊讶的是,在N. Benthamiana中,有11个Cendromeres中有11个由超级范围层面卫星阵列展出。有趣的是,富含卫星的和无卫星的丝粒被独特的吉普赛逆转录子广泛入侵,其中CENH3蛋白更优选地占据了CENH3蛋白,这表明它们在中心仪功能中至关重要。我们证明rDNA是丝粒卫星的主要起源,线粒体DNA可以用作Centromere的核心成分。亚基因组分析表明,卫星阵列的出现可能会在多倍体化后基因组休克期间驱动着丝粒的形成和成熟。总的来说,我们提出了本氏菌Centromeres通过Neocentromere的形成,卫星扩张,逆转录转座子富集和mtDNA整合而发展。
着丝粒是真核染色体的重要区域,负责形成着丝粒复合体,在细胞分裂过程中与纺锤体微管连接。值得注意的是,尽管着丝粒在染色体分离中保持保守功能,但其底层 DNA 序列在物种内和物种间都存在差异,并且主要是重复性的。着丝粒的重复内容包括高拷贝串联重复序列(卫星)和/或特定的转座子家族。着丝粒的功能区域由特定组蛋白 3 变体 (CENH3) 的加载定义,该变体使着丝粒成核并显示动态调节。在许多植物中,着丝粒由卫星重复阵列组成,这些阵列的 DNA 甲基化程度高,并被嗜着丝粒的逆转录转座子侵入。在某些情况下,逆转录转座子成为 CENH3 加载的位点。我们回顾了植物着丝粒的结构,包括单着丝粒、全着丝粒和元多着丝粒结构,这些结构在染色体上着丝粒附着位点的数量和分布上有所不同。我们讨论了 CENH3 负荷的变化如何在植物胚胎发生早期细胞分裂过程中驱动基因组消除。我们回顾了表观遗传状态如何影响着丝粒身份,并讨论了试图解释跨物种观察到的着丝粒序列快速变化的进化模型,包括重组的潜在作用。我们概述了可能在着丝粒内起作用的假定选择模式,以及重复序列在驱动着丝粒进化周期中的作用。虽然我们的主要重点是植物基因组,但我们将其与动物和真菌着丝粒进行了比较,以得出着丝粒结构和功能的真核生物范围的视角。
着丝粒是真核染色体的重要区域,负责形成着丝粒复合体,在细胞分裂过程中与纺锤体微管连接。值得注意的是,尽管着丝粒在染色体分离中保持保守功能,但其底层 DNA 序列在物种内和物种间都存在差异,并且主要是重复性的。着丝粒的重复内容包括高拷贝串联重复序列(卫星)和/或特定的转座子家族。着丝粒的功能区域由特定组蛋白 3 变体 (CENH3) 的加载定义,该变体使着丝粒成核并显示动态调节。在许多植物中,着丝粒由卫星重复阵列组成,这些阵列的 DNA 甲基化程度高,并被嗜着丝粒的逆转录转座子侵入。在某些情况下,逆转录转座子成为 CENH3 加载的位点。我们回顾了植物着丝粒的结构,包括单着丝粒、全着丝粒和元多着丝粒结构,这些结构在染色体上着丝粒附着位点的数量和分布上有所不同。我们讨论了 CENH3 负荷的变化如何在植物胚胎发生早期细胞分裂过程中驱动基因组消除。我们回顾了表观遗传状态如何影响着丝粒身份,并讨论了试图解释跨物种观察到的着丝粒序列快速变化的进化模型,包括重组的潜在作用。我们概述了可能在着丝粒内起作用的假定选择模式,以及重复序列在驱动着丝粒进化周期中的作用。虽然我们的主要重点是植物基因组,但我们将其与动物和真菌着丝粒进行了比较,以得出着丝粒结构和功能的真核生物范围的视角。
中心粒是动力学的结合位点,对于整个细胞分裂的染色体的忠实隔离至关重要。酵母中的点丝粒由约115 bp的特异性DNA序列编码,而区域的丝粒范围从裂变酵母中的6 - 10 kbp到人类的5 - 10 Mbp。了解中心粒染色质的物理结构(酵母中的圆锥体),定义为姐妹动物学之间的染色质,将提供基本的见解,以了解如何将Centromere DNA编织成僵硬的弹簧,该弹簧能够在有点裂期间能够抵抗微管拉力。围粒粒粒的一个标志是染色体(SMC)蛋白凝聚蛋白和冷凝蛋白的结构维持的富集。基于种群方法的研究(CHIP-SEQ和HI-C)以及实验获得的荧光粒结构的荧光探针图像,以及模拟与实验结果之间的定量比较,我们提出了一种建立姐妹动物学菌之间张力的机制。我们提出,丝粒是一种染色质瓶洗,是通过环状侵入蛋白冷凝蛋白和粘着素而组织的。由于径向环之间的空间排斥力,瓶颈布置提供了一种生物物理手段,可以将周围质粒染色质转化为弹簧。我们认为,瓶刷是染色体组织的组织原则,该原理已从该领域的多种方法中出现。