氧化铝和氧化石墨烯的增强陶瓷基质复合材料(CMC)已被广泛搜索,但仍未解决的问题,例如石墨烯的最佳分布或纤维纤维和基质之间的效率键。这项工作引入了一种基于Sol-Gel方法的新型制造程序,将Boehmite视为氧化铝前体,而氧化石墨烯纳米片则是增强阶段。通过在温和的条件下通过反应的火花等离子体烧结(RSP)进行样品的完整致密化。结构表征是由XRD,SEM和Micro-Raman以及其他技术进行的,并通过XPS研究了Al-O-C键的存在。通过Vickers的显微指示和纳米构造进行了机械表征。没有观察到有关年轻的模量,硬度或断裂韧性的显着变化,尽管对石墨烯分布的均匀性以及基质和增强阶段之间的化学键进行了改善。
正在开发智能植入电子医疗设备,以提供更连接,个性化和精确的医疗保健。这些植入物中的许多依赖于压电陶瓷来感测,通信,能量自主性和生物刺激,但是具有压电系数最强的压电陶瓷几乎完全基于铅。在本文中,我们评估了无铅替代方案的机电和生物学特征,0.94Bi 0.5 Na 0.5 TIO 3 - 0.06BATIO 3(BNT-6BT)通过两种合成途径制造:常规固态方法(PIC700)和磁带铸造(TC-BNT-6BT-6BT)。BNT-6BT材料表现出柔软的压电特性,D 33压电系数不如常用的PZT(PIC700:116 PC/N; TC-BNT-6BT:121 PC/N; PZT-5A; PZT-5A:400 PC/N)。该材料可以可行,作为软PZT的无铅替代品,其中最高10 dB的中等性能损失是可以忍受的,例如压力感应和脉搏回声测量。没有检测到BNT-6BT的短期有害生物学作用,并且该材料有助于MC3T3-E1鼠前层细胞的增殖。bnt-6bt可能是电活性植入物和可植入电子产品的可行材料,而无需密封。
陶瓷是一种脆性材料,具有高导热性和导电性,而陶瓷易碎、导电性差。然而,大多数陶瓷即使在高温下也表现出高刚度和稳定性,而大多数金属材料即使在中温下使用寿命也有限。在高温下,金属会发生微观结构变化和机械性能劣化。最常见的MMC类型是将陶瓷加入金属基体中。陶瓷增强金属复合材料预计比单相金属及其合金具有明显的优势。MMC受益于金属基体的延展性和韧性以及陶瓷增强体的高温稳定性、刚度和低热膨胀,可以满足金属和陶瓷都会独立失效的应用所需的性能[9, 10, 12-15]。
提高能源效率的技术 目前,实现高效燃烧过程的主要方法有两种。第一种方法是使用高脉冲(或高速)燃烧器。这些燃烧器通过高流出速度将热气直接返回燃烧室,大大增加了炉内的湍流。第二种方法是在燃烧过程中使用纯氧代替环境空气,从而减少体积流量,从而减少废气损失。但燃烧所用的能源仍然是化石燃料,导致不良排放。在过去的几十年里,人们开发了几种组件和工艺,利用废热提供电力、制冷和工艺热,进一步提高了热系统的效率。4
摘要:激光三维打印已成为基于熔体生长制备高性能Al 2 O 3 基共晶陶瓷的重要技术,但氧空位是该过程中不可避免的晶体缺陷,其形成机理和在沉积态陶瓷中的作用尚不清楚。本文采用激光3D打印制备Al 2 O 3 /GdAlO 3 /ZrO 2 三元共晶陶瓷,通过精心设计的退火实验揭示了氧空位的形成机理,并研究了氧空位对凝固态共晶陶瓷结构和力学性能的影响。揭示了氧空位的形成是由于氧原子通过空位迁移机制从氧化物陶瓷中转移到缺氧气氛中,此外,氧空位的存在对增材制造共晶陶瓷的晶体结构和微观结构没有明显影响。然而这些晶体缺陷的形成会在一定程度上改变陶瓷材料的化学键性质,从而影响沉积态共晶陶瓷的力学性能。研究发现,去除氧空位后,陶瓷材料的硬度降低了3.9%,断裂韧性提高了13.3%。该结果可为调控氧化物陶瓷材料的力学性能提供一种潜在的策略。关键词:氧化物共晶陶瓷;激光3D打印;氧空位;微观结构;力学性能
先进的柔性电子器件和软体机器人需要开发和实施柔性功能材料。磁电 (ME) 氧化物材料可以将磁输入转换为电输出,反之亦然,使其成为先进传感、驱动、数据存储和通信的绝佳候选材料。然而,由于其易碎性质,它们的应用仅限于刚性设备。在这里,我们报告了柔性 ME 氧化物复合材料 (BaTiO 3 /CoFe 2 O 4 ) 薄膜纳米结构,它可以转移到可拉伸基底上,例如聚二甲基硅氧烷 (PDMS)。与刚性块体材料相比,这些陶瓷纳米结构表现出柔性行为,并通过机械拉伸表现出可逆可调的 ME 耦合。我们相信我们的研究可以为将陶瓷 ME 复合材料集成到柔性电子器件和软体机器人设备中开辟新途径。
非常适合于隔热和隔音材料。此外,玻璃材料的制造成本非常高,而且还需要长时间的热处理,从而消耗大量的能源。另一方面,通过采用低成本的常压干燥工艺,可以显著节省透明二氧化硅气凝胶的制造成本。然而,二氧化硅气凝胶由于其项链状微结构和弱的颗粒间结合,通常机械性较脆,14 并且在气凝胶材料中保持高隔热性和高光学透明度仍然具有挑战性。15 因此,在表现出低热导率的同时获得透明且机械强度高的二氧化硅气凝胶至关重要。在本研究中,我们报告了一种制造透明隔热二氧化硅气凝胶材料的合成策略,实现了 18 mW m 1 K 1 的低热导率和可见透明度(400 nm 和 800 nm 的广谱透明度为 70%)。溶剂交换过程促进了它们的光学透明度,而疏水表面改性则可抵抗环境压力干燥过程中的孔隙塌陷并保持其结构完整性。高可见光透明度、低热导率、8% 低声强的隔音效果以及加入透明聚合物的可扩展制造展示了它们在透明窗口材料中的潜在应用。同时,与透明二氧化硅气凝胶结合的太阳能接收器可以在 1 太阳辐射下 12 分钟内达到 122 摄氏度,比环境大气中高 200%。透明的工程结构