日本卡纳那川 - 2023年12月22日 - peptidream Inc.(总裁:帕特里克·C·里德(Patrick C. subsidiary of PeptiDream, has entered into a strategic partnership with LinqMed Inc. (President: Yukie Yoshii, Headquarters: Chiba-shi, Chiba, Japan, “LinqMed”) for the clinical development, regulatory filing and commercialization in Japan of 64 Cu-ATSM, a targeted radiotherapeutic for the potential treatment of malignant brain tumors.放射性疗法64 Cu-ATSM是一种小分子二乙酰基双(N 4-甲基硫代性氨基苯巴酮),与放射性同位素铜64(64 CU)偶联。大多数肿瘤在肿瘤内部和周围周围产生缺氧的微环境,这是由于迅速增殖的肿瘤细胞的消耗增加,并且由于肿瘤血管生成而引起的氧气供应不足,并且由于异常而导致的氧气供应不足,而64个CU-ATSM在这些低氧肿瘤微环境中定位于这些较低的肿瘤损伤,并构成了64个Cuunotient in IRRERIC,该损害是64 cusaigention tht Wht tht tht tht tht cu-cuunotic prognotial in IRRERIS in IRRERIC,该损害均可供应。导致肿瘤细胞死亡。 在日本,每年有大约4,000 - 5,000例新的神经胶质瘤病例,5年总生存率(OS)率为15.5%,中位OS为18个月,复发率为51%。 目前尚无对这些复发性恶性脑肿瘤患者的有效或已建立的治疗方法,这些脑肿瘤已被证明是无效的。 预计完成的研究将在2024年上半年读取。大多数肿瘤在肿瘤内部和周围周围产生缺氧的微环境,这是由于迅速增殖的肿瘤细胞的消耗增加,并且由于肿瘤血管生成而引起的氧气供应不足,并且由于异常而导致的氧气供应不足,而64个CU-ATSM在这些低氧肿瘤微环境中定位于这些较低的肿瘤损伤,并构成了64个Cuunotient in IRRERIC,该损害是64 cusaigention tht Wht tht tht tht tht cu-cuunotic prognotial in IRRERIS in IRRERIC,该损害均可供应。导致肿瘤细胞死亡。在日本,每年有大约4,000 - 5,000例新的神经胶质瘤病例,5年总生存率(OS)率为15.5%,中位OS为18个月,复发率为51%。目前尚无对这些复发性恶性脑肿瘤患者的有效或已建立的治疗方法,这些脑肿瘤已被证明是无效的。预计完成的研究将在2024年上半年读取。第1阶段的开放标签介入剂量升级安全性研究已在国家癌症中心(JRCT2091220362)进行,对复发性恶性脑肿瘤(胶质母细胞瘤,胶质母细胞瘤,PCNSL和/或恶性脑膜瘤)的患者已经进行。该研究的主要结果是确定剂量限制毒性(DLT)的发生,并在确定反应率,无进展生存率(PFS)的次要结果,通过内部暴露评估,不良事件的表达,不良事件,类固醇非接收率和Karnofsky绩效状态(KARNOFSKY绩效状态(KPS KPS)估计有效剂量。通过这种合作伙伴关系,Linqmed将继续领导64个Cu-atsm和Pdradiopharma的开发活动,将领导日本的监管申请和商业化活动。根据《战略合作协议》,两家公司将分享日本64 CU-ATSM的开发和商业化的成本和利润。此外,peptidream还参加了Linqmed最近的系列A,现在是Linqmed的股东。
< 公司一览 > 同和控股株式会社 东通兴产株式会社 同和生态系统株式会社 CEMM 株式会社 同和金属矿业株式会社 同和技术研究株式会社 同和电子材料株式会社 同和技术工程株式会社 同和金属技术株式会社 YOWA ENGINEERING 株式会社 同和热技术株式会社 秋田工程株式会社 同和科技株式会社 堺矿业株式会社 同和管理服务株式会社 同和兴产株式会社 ECO-SYSTEM JAPAN 株式会社 同和工会 ECO-SYSTEM 秋田株式会社 同和健康保险协会 ECO-SYSTEM 三洋株式会社DOWA 互惠协会 ECO-SYSTEM CHIBA 株式会社 同和会(同和控股株式会社重组) MELTEC 株式会社 同和环境管理株式会社 冈山湖汤株式会社 BANGPOO 环境综合体有限公司 MELTEC IWAKI 株式会社 东海岸环境综合体有限公司 Soso Smart Eco-Company 株式会社 WASTE MANAGEMENT SIAM 有限公司 GEOTECHNOS 株式会社 WMS DEPOT 株式会社 ECO-SYSTEM HANAOKA 株式会社 MODERN ASIA ENVIRONMENTAL HOLDINGS PTE. LTD. E&E Solutions Inc. PT PRASADHA PAMUNAH LIMBAH INDUSTRI GREEN FILL KOSAKA 株式会社GOLDEN DOWA ECO-SYSTEM MYANMAR COMPANY LIMITED ECO-SYSTEM OKAYAMA CO., LTD. PT DOWA ECO-SYSTEM INDONESIA ECO-RECYCLE CO., LTD. Nippon PGM Europe sro ECO-SYSTEM RECYCLING CO., LTD. DOWA METALS & MINING (THAILAND) CO., LTD. Act-B Recycling Co., Ltd. DOWA METALS & MINING AMERICA, INC. ECO-SYSTEM KOSAKA CO., LTD. NPGM KOREA Co., Ltd. DOWA TSUUN CO., LTD. NPGM USA INC. BIODIESEL OKAYAMA CO,. LTD. DOWA ADVANCED MATERIALS (SHANGHAI) CO., LTD. HOKUSHU KANKYOU SERVICES CO., LTD. DOWA METALTECH (THAILAND) CO., LTD.小坂冶炼有限公司 同和新材料(上海)有限公司 日本 PGM 株式会社 同和精密(泰国)有限公司 秋田锌有限公司 多瓦利精密有限公司 秋田稀有金属有限公司 多和 METALTECH MEXICO,SAde CV 秋田锌解决方案有限公司 同和金属技术(南通)有限公司 秋田锌回收有限公司 多和 METALTECH 春武里饭岛兴产有限公司 多和 THT AMERICA,INC. 多和半导体秋田有限公司 同和热技术(泰国)有限公司 多和电子材料冈山株式会社 HIGHTEMP FURNACES LTD. DOWA IP CREATION CO., LTD. 昆山同和热炉有限公司 DOWA F-TEC 有限公司 PT.DOWA THERMOTECH INDONESIA DOWA METAL CO., LTD. PT.DOWA THERMOTECH FURNACES DOWA METANIX CO., LTD. DOWA THERMOTECH MEXICO SA de CV NEW NIPPON BRASS CO., LTD. DOWA INTERNATIONAL CORPORATION HOEI SHOJI CO., LTD. DOWA HD EUROPE GMBH DOWA HIGHTECH CO., LTD. 同和控股(上海)有限公司 DOWA POWER DEVICE CO., LTD. DOWA THERMOENGINEERING CO., LTD.
a 西班牙科尔多瓦圣胡安迪奥斯医院 HT Médica 研发部 b 西班牙马德里自治大学医学院 c 美国明尼苏达州罗切斯特市梅奥诊所实验室医学和病理学系 d 日本千叶县鸭川市龟田医疗中心病理学系 e 荷兰奈梅亨拉德堡德大学医学中心病理学系 f 美国密歇根州安娜堡市密歇根大学病理学系 g 美国马萨诸塞州波士顿市麻省总医院/哈佛医学院综合诊断中心病理学系 h 新西兰惠灵顿市奥塔哥大学惠灵顿医学与健康科学学院 i 瑞典斯德哥尔摩市卡罗琳斯卡医学院肿瘤病理学系 j 葡萄牙波尔图市波尔图大学分子病理学与免疫学研究所病理实验室 k 美国佐治亚州亚特兰大市埃默里大学病理学与实验室医学系 l Azienda 病理学部意大利卡尔塔吉罗内格拉维纳医院卡塔尼亚省立卫生研究院 m 西班牙格拉纳达圣塞西利奥临床大学医院病理学系 n 美国宾夕法尼亚州匹兹堡大学医学中心解剖病理学系 o 美国马萨诸塞州波士顿麻省总医院和哈佛医学院病理学系 p 荷兰鹿特丹伊拉斯姆斯大学医学中心病理学系 q 美国威斯康星州密尔沃基威斯康星医学院病理学系 r 加拿大温哥华不列颠哥伦比亚大学迈克尔·史密斯基因组科学中心病理学与实验室医学系 s 德国海德堡海德堡大学医院病理学研究所 t 美国德克萨斯州奥斯汀 Sonic Healthcare 病理学系 u 美国康涅狄格州纽黑文耶鲁大学医学院病理学系 v 美国密歇根州底特律亨利·福特医院病理学系 w英国利兹 x 西班牙马德里拉巴斯大学医院整形与重建外科系 y 西班牙马德里 Puerta de Hierro-Majadahonda 大学医院普通外科和消化道系 z 西班牙哈恩 Clínica Las Nieves HT Médica 综合诊断系 aa 美国加利福尼亚州斯坦福斯坦福大学医学院病理学系和医学与成像人工智能中心
a 西班牙科尔多瓦圣胡安迪奥斯医院 HT Médica 研发部 b 西班牙马德里自治大学医学院 c 美国明尼苏达州罗切斯特市梅奥诊所实验室医学和病理学系 d 日本千叶县鸭川市龟田医疗中心病理学系 e 荷兰奈梅亨拉德堡德大学医学中心病理学系 f 美国密歇根州安娜堡市密歇根大学病理学系 g 美国马萨诸塞州波士顿市麻省总医院/哈佛医学院综合诊断中心病理学系 h 新西兰惠灵顿市奥塔哥大学惠灵顿医学与健康科学学院 i 瑞典斯德哥尔摩市卡罗琳斯卡医学院肿瘤病理学系 j 葡萄牙波尔图市波尔图大学分子病理学与免疫学研究所病理实验室 k 美国佐治亚州亚特兰大市埃默里大学病理学与实验室医学系 l Azienda 病理学部意大利卡尔塔吉罗内格拉维纳医院卡塔尼亚省立卫生研究院 m 西班牙格拉纳达圣塞西利奥临床大学医院病理学系 n 美国宾夕法尼亚州匹兹堡大学医学中心解剖病理学系 o 美国马萨诸塞州波士顿麻省总医院和哈佛医学院病理学系 p 荷兰鹿特丹伊拉斯姆斯大学医学中心病理学系 q 美国威斯康星州密尔沃基威斯康星医学院病理学系 r 加拿大温哥华不列颠哥伦比亚大学迈克尔·史密斯基因组科学中心病理学与实验室医学系 s 德国海德堡海德堡大学医院病理学研究所 t 美国德克萨斯州奥斯汀 Sonic Healthcare 病理学系 u 美国康涅狄格州纽黑文耶鲁大学医学院病理学系 v 美国密歇根州底特律亨利·福特医院病理学系 w英国利兹 x 西班牙马德里拉巴斯大学医院整形与重建外科系 y 西班牙马德里 Puerta de Hierro-Majadahonda 大学医院普通外科和消化道系 z 西班牙哈恩 Clínica Las Nieves HT Médica 综合诊断系 aa 美国加利福尼亚州斯坦福斯坦福大学医学院病理学系和医学与成像人工智能中心
20/21年第三季度,随着新冠疫情蔓延,日本出台一系列措施控制感染率并刺激经济活动,日本经济出现了初步复苏迹象。然而,鉴于全球经济低迷和当前感染率稳步上升,政府再次实施紧急状态并可能限制经济活动的风险相对较高,而且似乎很难确定这将在近期内对经济产生何种影响。在补习班和私人补习行业,许多公司被迫暂时停止所有运营,尤其是那些专门从事小组教学课程的公司。考虑到日本出生率下降的问题尚无明显解决办法,以及儿童教育和大学录取总体方法的革命,整个行业正在发生大规模变化。就我们的业务模式而言,我们基于日本出生率将继续下降的假设,并牢记“为孩子们的光明未来付出一切”的公司精神,努力提供切实有益的教育服务。利用我们高度多元化的业务模式,我们旨在成为我们领域的卓越力量,并将这一目标作为我们财务成功的基本政策。最初,我们在疫情开始时暂时关闭了学校,但随后我们采取了竞争对手学校所没有的措施,为学生创造了一个没有感染风险的学习环境。这些措施包括在所有教学间之间安装 190 厘米高的墙壁,用透明塑料窗帘将学生和导师隔开,要求学生和教师都戴上口罩,导师要戴面罩,以及其他预防措施。这些措施受到了好评,并在各种媒体上广泛展示。因此,尽管由于政府呼吁学生自我克制外出,我们的学生人数最初有所下降,但在 20/21 财年第二季度末,学生人数已恢复到略高于 2019/20 财年第二季度同期的水平。此外,在新冠疫情爆发后,日本宣布进入紧急状态,据报道全国医疗机构设备短缺,我们开始向东京及其周边三个县(神奈川、埼玉、千叶)捐赠医用级面罩。我们将继续致力于为学生提供安全的环境,让他们安心学习,同时继续致力于集团各个领域的发展。
欢迎参加 IEEE-ROBIO 2021,又称 2021 年 IEEE 机器人与仿生学国际会议。IEEE-ROBIO 2021 将于 2021 年 12 月 27 日至 31 日在中国三亚海南福朋喜来登酒店举行。三亚市以其原始的历史村落和现代豪华度假酒店而闻名,一直是中国和世界各地最受欢迎的旅游目的地之一。冬季温暖的天气吸引了世界各地的游客。IEEE-ROBIO 是一个成熟而充满活力的国际会议,自 2004 年以来每年举办一次,并在机器人和仿生学领域获得了越来越高的国际知名度。由于 COVID-19 疫情,IEEE-ROBIO 2020 和 2021 将合并,并作为混合会议联合举行。 IEEE-ROBIO 2021 的主题是“机器人和仿生学应对社会重大挑战”,反映了人们对机器人和仿生学的开发和应用兴趣和研究投入的快速增长,以满足尚未满足的需求,以及它们对人类福祉和社会的潜在影响。我们很高兴为您带来 2021 年会议,这是一个来自不同国家的研究人员交流广泛科学主题的平台。IEEE-ROBIO 2021 共收到来自 12 个国家和地区的 398 篇论文提交。经过仔细的审查过程,332 篇(83%)的论文被技术项目接受。在提交的论文中,排名前五的主题是机器人控制、仿生机器人、软材料机器人、操控和机器人学习。提交论文最多的国家和地区(按降序排列)是中国、日本、德国、香港、英国和美国。 IEEE ROBIO 2021 为期五天的会议计划包括 3 场全体会议和 5 场主题演讲,由机器人和仿生学领域的顶尖研究人员发表。IEEE-ROBIO 2021 的录用论文分为 46 个口头会议和 3 个海报会议。IEEE-ROBIO 2021 是许多组织和个人共同努力的结果。没有他们的支持、奉献和贡献,IEEE-ROBIO 2021 就不可能实现。首先,我们衷心感谢我们的赞助商,IEEE 机器人与自动化协会、深圳机器人研究院、千叶工业大学、南开大学、中科院沈阳自动化研究所、德克萨斯州立大学、东北大学和 NOKOV 有限公司。其次,我们要感谢 IEEE-ROIBO 2021 组委会成员在各自的角色和职责范围内所做的不懈努力和工作。第三,我们要感谢 IEEE-ROBIO 2021 技术计划委员会成员的辛勤工作,这对于确保公平、仔细的审查过程以及鼓舞人心的技术计划至关重要。最后但同样重要的是,我们要感谢所有提交论文的作者,以及前往会议上展示其作品的演讲者,这次会议的成功离不开他们的帮助。IEEE-ROBIO 2021 无疑是您享受和庆祝的会议。
神经精神疾病越来越普遍。鉴于其复杂且多因素的发病机理,迫切需要有效且有针对性的疗法可以改善患者的生活质量。全基因组关联研究(GWASS)已经确定了各种遗传改变,这些改变有助于神经精神疾病的发展和发展,从轻度阅读障碍到更严重的疾病,例如精神分裂症。虽然成千上万的单核苷酸多态性(SNP)(SNP)与DNA中的单个核苷酸位置发生了变化 - 与神经系统疾病有关,但大多数位于基因组的非编码区域。尽管这些非编码区未编码蛋白质,但它们包含调节元素,例如增强子序列,在控制基因表达中起着至关重要的作用。增强子可以在长距离内调节基因活性,并且通常特定于细胞类型和发育阶段。尽管其重要性,但增强子的特征仍然很差,并且尚未完全了解其在神经系统发展和疾病中的精确功能。在一项新的研究中,奇巴大学高级学术研究与医学研究院医学研究所Masahito教授以及Karolinska Institutet,Sweden,Sweden和PelinSahlénnewlobleInstutter from fromniwleart Institute froment from Technology的Karolinska Institutet的Huddinge(MedH)的Juha Kere和Peter Swoboda教授以及彼得罗斯卡研究所(Karolinska Institutet)的彼得·斯沃博达(Peter Swoboda)博士。他们还研究了与神经元疾病有关的假定增强子与GWAS识别的基因座之间的关联。他们进行了一系列高级分析,以使用Luhmes细胞来识别和表征参与神经元分化的增强子,Luhmes细胞是源自人类胎儿中脑多巴胺能神经元的细胞系。该研究的主要作者Yoshihara博士很快就会发表在EMBO报告中,他说:“阐明与疾病相关的变体影响基因调节的方式可以揭示以前统一的参与神经元疾病的分子途径,并揭示了用于药物开发的新型治疗靶标。”研究人员使用了luhmes神经元前体细胞,这些细胞可以分化为与人脑衍生神经元具有高转录相似性的功能性神经元。他们采用了基因表达(CAGE)和天然伸长转录本(净)键的CAP分析,以识别和量化基因组宽水水平的启动子和增强子的活性。这些技术与靶向的染色体构象捕获(Capture Hi-C/HICAP)相结合,这是一种将远处增强子与其靶基因联系起来的高级测序方法。该分析确定了47,350个主动推定增强剂,其中65.6%是新颖的,并且证明了与帕金森氏病,精神分裂症,双相情感障碍和主要抑郁症相关的SNP富集。最后,他们在培养细胞中进行了体外测定,以验证启动子增强子相互作用。使用CRISPR-CAS9系统进行基因组编辑,他们激活了与神经元分化和疾病有关的基因的增强子和启动子。与他们的分析一致,增强子的激活导致靶基因的表达水平显着升高。
颅咽管瘤 (CP) 是一种罕见的脑肿瘤,发生在下丘脑和垂体附近的区域。颅咽管瘤会导致视力缺陷、神经元缺陷、糖尿病和发育问题等并发症。颅咽管瘤有两种主要亚型:釉质瘤性颅咽管瘤 (ACP) 和乳头状颅咽管瘤 (PCP)。这两种亚型以其独特的基因特征为特征。ACP 通常以 CTNNB1 基因突变为特征,而 PCP 主要与 BRAF 基因突变有关。治疗颅咽管瘤的主要方法是手术干预。然而,肿瘤的侵袭性及其靠近关键结构的位置对手术干预提出了重大挑战。随着肿瘤的进展,它会渗透到周围组织,导致严重的神经系统损伤。因此,单靠手术不足以解决颅咽管瘤带来的复杂挑战。为了成功切除肿瘤并保留周围健康组织,必须全面了解肿瘤的生物学特性和分子进展。在此背景下,田中智明教授与日本千叶大学医学院的樋口义则教授和河野隆史博士合作开展了一项研究,以阐明这种肿瘤所涉及的潜在生物学过程。该研究于2024年9月30日在线发布,并于2024年11月15日发表在iScience杂志第27卷第11期上。为此,他们利用单细胞RNA测序(一种揭示单个细胞间基因表达差异的技术)并分析了10例CP。在一次采访中,该研究的资深作者田中教授解释了其背后的动机。他说:“尽管这些肿瘤在组织学上是良性的,但它们会严重影响关键的大脑结构。” “我们的目标是开发更有针对性和侵入性更小的治疗方法,从而显著改善患者的治疗效果和生活质量。” 单细胞分析显示,肿瘤微环境 (TME) 内有多种细胞类型,包括肿瘤细胞、免疫细胞和成纤维细胞,不同病例的比例各不相同。肿瘤细胞分为两种主要亚型:1 型,在 ACP 中占主导地位,2 型,在 PCP 中占主导地位。ACP 和 PCP 亚型的单细胞基因表达数据被聚类以揭示肿瘤内不同的细胞类型。该研究确定了与 ACP 和 PCP 肿瘤中上皮细胞发育和免疫反应相关的细胞类型。然而,与肿瘤钙化有关的细胞类型在 ACP 中尤为普遍,而细胞周期相关基因在 PCP 类型中占主导地位。此外,研究团队发现两种肿瘤类型之间的巨噬细胞类型存在显著差异。促炎性M1巨噬细胞和炎症相关标志物在ACP中较高,而抗炎性M2巨噬细胞在PCP中较高。因此,M1和M2巨噬细胞比例较高与糖尿病和垂体功能不全的发生相关。
微量金属对所有生物体的生长都至关重要。了解这些微量金属在新陈代谢中的作用对于维持生物体的稳定状态至关重要。此外,由于各种污染,人类还面临着各种有害重金属的不断接触。总的来说,这些方面导致了分析技术领域的研究和发展,这些技术可以帮助确定我们细胞中这些微量金属的含量。电感耦合等离子体质谱 (ICP-MS) 是一种分析技术,用于分析各种样品(包括生物样品)中的元素组成。近年来,单细胞 ICP-MS (scICP-MS) 技术已广泛应用于医学和生物领域,用于分析细菌、真菌、微生物、植物和哺乳动物中的单个活细胞。scICP-MS 的样品引入系统由传统的气动雾化器和总消耗喷雾室组成。气动雾化器将样品(细胞悬浮液)液体转化为雾气。虽然使用雾化器的传统 scICP-MS 分析对于酵母细胞的传输效率达到 10%,但由于哺乳动物细胞的脆弱性,它无法用于哺乳动物细胞。众所周知,化学固定可以增强哺乳动物细胞的强度,但它会极大地影响元素含量,导致分析不准确。因此,需要开发一种不会对哺乳动物细胞造成任何损害的样品引入系统。为此,来自日本的一组研究人员现已证明微滴发生器 (µDG) 作为样品引入系统的潜力,可用于高效定量分析哺乳动物细胞的元素。该团队由日本千叶大学药学研究生院的助理教授 Yu-ki Tanaka 以及 Hinano Katayama 女士、Risako Iida 女士和 Yasumitsu Ogra 教授组成,他们将 µDG 引入 ICP-MS 的样品引入系统,表明该系统能够准确地进行元素分析。他们的研究成果于 2024 年 12 月 2 日发表在《分析原子光谱杂志》第 40 卷上。Tanaka 博士进一步阐述道:“到目前为止,scICP-MS 已应用于细菌、真菌、植物细胞和红细胞。我们将 scICP-MS 技术的潜力扩展到哺乳动物培养细胞,开发了一种用于测量哺乳动物培养细胞中元素含量的强大分析技术。”在研究中,研究人员使用了两种样品引入系统进行颗粒和细胞样品分析。第一个是传统系统,包括同心玻璃雾化器和总消耗喷雾室。另一个系统包括插入制造的 T 形玻璃管道中的 µDG,玻璃管的一端连接全消耗雾化室,另一端连接ICP炬管。研究人员发现,使用µDG后,细胞运输效率大幅提高。此外,他们还估算了K562细胞(也称为人类慢性粒细胞白血病K562细胞)中的镁、铁、磷、硫和锌,发现µDG保持了细胞的原始结构,而传统系统通常会改变细胞的结构。因此,它非常适合单细胞元素分析,因为它不会影响细胞的结构,从而可以高效地检测细胞。“我们的
你有没有想过孔雀羽毛的鲜艳蓝色或甲虫身上闪闪发光的金属几丁质?这些自然奇观就是结构色的例子——微观结构产生鲜艳持久色调的现象。受到这些奇迹的启发,日本的一个研究小组一直在探索结构色。他们早期的工作发现,用黑色素颗粒制备结构色材料模仿了孔雀羽毛的着色机制。在此基础上,该团队着手开发一种涂层材料,利用黑色素颗粒捕捉结构色的光彩,即使从不同角度观看也能产生非彩虹色。研究小组包括日本千叶大学理工学院的 Michinari Kohri 教授和 Yui Maejima 女士,他们与武田胶体技术咨询有限公司的 Shin-ichi Takeda 博士和国家材料科学研究所的 Hiroshi Fudouzi 博士合作。他们的研究成果于 2024 年 12 月 18 日发表在《大分子反应工程》上。Kohri 博士描述了他进行这项研究的动机,“多年来,我们一直在研究受自然生物启发的基于黑色素的结构色材料。我们的动机是通过开发快速创造结构色并添加防水等功能特性的方法,使这些材料更加实用。” 为了实现这一目标,该团队准备了三种不同直径的聚苯乙烯颗粒。然后,他们添加了一层聚多巴胺(改性黑色素颗粒),然后通过迈克尔加成反应添加具有疏水性的具有 18 个碳原子的烷基(十八烷基)。在该反应中,带负电荷的化学基团添加到 α,β-不饱和羰基化合物中,以引入增强防水性的疏水基团。这是在不依赖疏水性但会引起重大环境问题的氟化合物的情况下实现的。使用时域核磁共振 (TD-NMR) 方法确认了颗粒的疏水性。处理完颗粒后,它们会分散在己烷中,从而可以快速高效地应用于玻璃和三聚氰胺层压板等基材上。干燥后,涂层的接触角超过 160 度,色调单一,表面自洁,呈现出荷叶效应,水滴在材料上形成水珠并滚落,不会留下残留物。研究发现,用十八烷基涂层获得的疏水性黑色素颗粒的疏水性几乎与用氟化合物涂层的颗粒相同,而氟化合物具有高疏水性。第一作者 Maejima 女士强调了这项研究的独特发现,她指出,“我们发现,通过将粒子表面的疏水性与粒子的分级组装结构相结合,可以实现超疏水结构彩色涂层,而这一切只需几分钟即可完成。”该团队专注于创建一种简单且可扩展的方法,确保涂层可以在几分钟内完成,而无需复杂的设备或工艺。前岛女士评论了他们发现的实用性:“这项技术有可能成为下一代涂层材料,非常适合墙纸或户外表面等应用,而无需依赖会随着时间而褪色的颜料。它的简单性和效率使其非常适合工业用途。”
