摘要。资源受限的设备,例如无线传感器和物联网(IoT)设备在我们的数字生态系统中已变得无处不在。这些设备生成并处理我们数字数据的主要部分。但是,由于我们现有的公钥加密方案的量子计算机即将发生威胁以及在物联网设备上可用的有限资源,因此设计适合这些设备的轻量级量化后加密(PQC)方案非常重要。在这项工作中,我们使用基于错误的PQC方案探索了学习的设计空间,以设计适用于资源约束设备的轻巧键合并机制(KEM)。我们对不同的设计元素进行了严格且广泛的分析和评估,例如多项式大小,场模结构,还原算法以及基于LWE的KEM的秘密和错误分布。我们的探索导致了轻巧的PQC-KEM Rudraksh的提议,而没有损害安全性。我们的方案提供了针对所选密文攻击(CCA)的安全性,该攻击(CCA)具有100个以上的核心SVP后量子后安全性,属于NIST级I安全类别(至少提供AES-128的安全性)。我们还展示了如何将Ascon用于基于晶格的KEM中的轻质伪随机数生成和哈希功能,而不是广泛使用的keccak用于轻量级设计。我们的FPGA结果表明,Rudraksh目前需要类似安全性的PQC KEM之间的最小面积。与最先进的面积优化的Kyber实施相比,我们的Rudraksh实施对面积的需求提高了3倍,可以在高thoughtup Kyber的频率上以63%-76%的频率运行,并且与Time-Araea-AraeApoptuct-time-Araeapoptuct-time-aftrapuctiage 〜2×2×compact compact的实施相比,
e-邮件:vasyl.ustymenko@rhul.ac.uk摘要。让N代表N变量中具有二次多元公共规则的数字签名的长度。我们构建了Quantum的安全程序以签名O(n T),T≥1具有时间O(n 3+t)的签名n的数字文档。它允许在时间O(n 4)中签名O(n t),t <1。该过程是根据代数密码术定义的。它的安全性取决于基于半群的非交通加密协议,该协议指的是碰撞元件分解为构图中的复杂性,使其成分为给定的发电机。该协议使用了多种(k*)n的欧拉(Eulerian)变换的半群,其中k*是有限交换环k的非平凡乘法组。其执行复杂性为o(n 3)。此外,我们使用此协议来定义不对称的密码系统,并使用明文和密文的空间(k*)n,允许用户加密和解密o(n t)大小n中的n中o(n 3+[t])文档,其中[x]在x中提供[x]的流量。最后,我们建议基于协议的密码系统与明文空间(k*)n一起工作和密文k n的空间,该空间允许o(n t)解密,t> 1个大小n的文档,时间为o(n t+3),t> 1。多元加密图具有线性度O(n)和密度O(n 4)。我们通过Eulerian转换讨论了公共密钥的概念,该转换允许签署O(n t),t≥0文档O(n t+2)。还讨论了几种欧拉和二次转化的交付和使用思想。
摘要。资源受限的设备,例如无线传感器和物联网(IoT)设备在我们的数字生态系统中已变得无处不在。这些设备生成并处理我们数字数据的主要部分。但是,由于我们现有的公钥加密方案的量子计算机即将发生威胁以及在物联网设备上可用的有限资源,因此设计适合这些设备的轻量级量化后加密(PQC)方案非常重要。在这项工作中,我们使用基于错误的PQC方案探索了学习的设计空间,以设计适用于资源约束设备的轻巧键合并机制(KEM)。我们对不同的设计元素进行了严格且广泛的分析和评估,例如多项式大小,场模结构,还原算法以及基于LWE的KEM的秘密和错误分布。我们的探索导致了轻巧的PQC-KEM Rudraksh的提议,而没有损害安全性。我们的方案提供了针对所选密文攻击(CCA)的安全性,该攻击(CCA)具有100个以上的核心SVP后量子后安全性,属于NIST级I安全类别(至少提供AES-128的安全性)。我们还展示了如何将Ascon用于基于晶格的KEM中的轻质伪随机数生成和哈希功能,而不是广泛使用的keccak用于轻量级设计。我们的FPGA结果表明,Rudraksh目前需要类似安全性的PQC KEM之间的最小面积。与最先进的面积优化的Kyber实施相比,我们的Rudraksh实施对面积的需求提高了3倍,可以在高thoughtup Kyber的频率上以63%-76%的频率运行,并且与Time-Araea-AraeApoptuct-time-Araeapoptuct-time-aftrapuctiage 〜2×2×compact compact的实施相比,
最近,已经开发了许多基于混合DNA和混乱的图像加密算法。这些算法中的大多数利用混沌系统在分叉图中表现出耗散动力和周期性的窗口/图案以及参数空间附近共存的吸引子。因此,这种算法产生了几个弱键,从而使它们容易受到各种混乱的攻击。在本文中,我们提出了一种新型的保守性混沌标准MAP驱动的动态DNA编码(编码,加法,减法和解码),以进行图像加密。是第一个杂种DNA和基于保守的混乱图像加密算法,具有有效的有限键空间。所提出的图像加密算法是一种动态的DNA编码算法,即用于对每个像素不同规则进行编码,加法/减法,解码等的加密规则。是根据借助保守性混沌标准图生成的伪界序列随机选择的。我们提出了一种新型的方法,可以通过保守的混沌标准图生成伪随机序列,并在最严格的伪随机测试套件(NIST测试套件)中严格测试它们,然后在建议的图像加密算法中使用它们。我们的图像加密算法结合了独特的进纸和反馈机制,以生成和修改动态的一次性像素,这些像素被进一步用于加密普通图像的每个像素,从而在明文上和ciphertext上引起了所需的敏感性。在该算法中使用的所有控制伪序序列都是为参数的不同值(秘密键的一部分)而产生的,并通过混乱映射的迭代(在生成过程中)具有相互依赖性(因此在生成过程中),因此也具有极高的密钥灵敏度。绩效和安全分析已通过直方图分析,相关分析,信息熵分析,基于DNA序列的分析,感知质量分析,关键灵敏度分析,纯文本灵敏度分析,经典攻击分析等进行了广泛的执行。<结果是有希望的,并证明了该算法对各种常见的隐式分析攻击的鲁棒性。
Playfair Cipher作为对称的哭泣方法,同时加密字母对。本研究旨在通过合并修改后的Blum Blum Shub算法并利用Keystream值来增强Playfair Cipher的安全性。Blum Blum Shub算法通过引入四个Blum Prime数量进行修改,从而使质量分解复杂化。这些素数用于生成随机数,随后通过映射生成序列的等效字符来形成键。在此调查中,我们确保安全的钥匙交换,并在将相关字符与Bigrams组合时,消除了Fuller字符的必要性。此外,我们通过更改Playfair Cipher的加密机制来掩盖了明文和密文大范围之间的关系。值得注意的是,收件人不会直接接收钥匙;不胜枚举,它独立生成与发件人相同的密钥,从而解决了密钥交换挑战。所提出的算法使用MATLAB软件在HP计算机上进行评估,并根据雪崩效应,频率分析,密钥生成,密钥交换和针对暴力力量攻击的能力进行评估。仿真结果表明,提出的算法产生了高雪崩效应。它产生一个复杂的钥匙,具有挑战性,并且需要大量时间才能破解隐性分析攻击。单个明文特征的轻微修改导致平均雪崩效应为80%。因此,提出的方法比扩展算法更安全。关键字 - Playfair,修改BBS,KeyStream,Me-Dian,CCM,平均索引值
电子邮件:21BCS2259 [at] cuchd.in摘要:本文介绍了开放源加密工具,特别是GNUPG和Veracrypt的比较分析,重点介绍其性能,可用性和安全功能。我们的目标是通过测试各种参数(包括加密/解密时间和资源利用率)来确定它们对不同数据类型和用例的有效性。关键字:加密,加密,解密,安全性,gnupg,veracrypt 1。简介密码学涉及将明文(正常,可读文本)转换为密文的过程,即一种称为加密的方法,并随后将其转换回明文,被称为解密。加密算法可以通过各种方式进行分类,最常见的类型是秘密密钥密码学也称为对称密钥密码学和公共密钥密码学,也称为非对称密钥密码[1]。这是一门侧重于编码和解码数据的数学科学,允许在网络或渠道上进行安全的存储和关键信息转换,除了预期的接收者[2]以外,任何人都无法阅读。目前,各个安全领域的研究人员,尤其是在身份验证和关键交换方面,正在开发各种协议,以增强和保护物联网(IoT)环境并有效地实施此方法[3]。本文比较了两种广泛使用的开源加密工具:GNU隐私保护罩(GNUPG)和Veracrypt。gnupg是一种使用公共/私钥密码学来确保文件和通信的加密标准,我们将与AES(Veracrypt)进行比较。该研究将证明,尽管这两种工具在不同的情况下都表现出色,但它们的优势和劣势使它们适合于不同的用例,这是通过多个测试案例研究强调的。将通过动手测试比较性能,可用性和安全功能。这两个工具将在不同的方案下进行评估,包括多种大小的加密文件,其中包括文本文件以及诸如“ MP4”和JPG图像之类的媒体。我们将测量加密/解密速度和系统资源使用情况。详细的测试案例提供了这些工具如何在现实世界环境中运行的深入观点。
安全性在云计算中的重要性不能被夸大。由于其许多优势,云计算已成为当代公司运营的关键组成部分。但是,这些好处带有某些安全挑战和风险。这是一些研究安全挑战和其他一些调查的研究,这些研究总结了安全挑战。据我们所知,这些是该领域中最相关的艺术状态。 Tabrischi和Rafsanjani审查了当前的安全框架,以最大程度地减少漏洞和阻碍潜在的攻击。 降低了风险和脆弱性,并增强了对不断联系的世界的信心,它们提供了几个书面政策,程序和过程,概述了整个文章中云环境中安全管理方法的概述。 这些问题涉及云平台数据和服务安全性。 本文分类了安全困难,并在安全问题与建议解决方案的解决方案之间进行了比较研究[18]。 Vinoth and Vemula在[19]中根据文献进行了审查,分析和评估云系统网络和数据安全的最大威胁。 此外,本文讨论了电子商务和银行业务中的几种云使用情况和相关的安全风险。 Sun在隐私安全研究中检查了与各种云计算隐私安全保护系统有关的最新技术。 作者首先概述了与云计算相关的一些隐私安全危害,并提供了保护隐私的详尽方法。据我们所知,这些是该领域中最相关的艺术状态。Tabrischi和Rafsanjani审查了当前的安全框架,以最大程度地减少漏洞和阻碍潜在的攻击。降低了风险和脆弱性,并增强了对不断联系的世界的信心,它们提供了几个书面政策,程序和过程,概述了整个文章中云环境中安全管理方法的概述。这些问题涉及云平台数据和服务安全性。本文分类了安全困难,并在安全问题与建议解决方案的解决方案之间进行了比较研究[18]。Vinoth and Vemula在[19]中根据文献进行了审查,分析和评估云系统网络和数据安全的最大威胁。此外,本文讨论了电子商务和银行业务中的几种云使用情况和相关的安全风险。Sun在隐私安全研究中检查了与各种云计算隐私安全保护系统有关的最新技术。作者首先概述了与云计算相关的一些隐私安全危害,并提供了保护隐私的详尽方法。Second, the paper presents and discusses the state of research for several technologies, including multi-tenant, trust, access control, ciphertext policy attribute-based encryption (CP-ABE), key policy attribute-based encryption (KP-ABE), trace mechanism, fine-grain, multi-authority, revocation mechanism, proxy re-encryption (PRE), hierarchical encryption, searchable encryption (SE)等等。最后,提出的论文比较和分析了典型方案的应用特征和范围。此外,本文还解决了开放研究问题,并指出了潜在的未来研究途径[20]。在本研究中审查了影响云计算技术开发的主要和当前的云安全风险[21]。
摘要 - 同构加密(FHE)是一种加密技术,具有通过对加密数据启用计算来彻底改变数据隐私的潜力。最近,CKKS FHE方案变得非常流行,因为它可以处理实数。但是,CKKS计算尚未普遍存在,因为它在计算和内存方面都是资源密集的,并且比未加密数据的计算要慢多个数量级。最新的算法和硬件优化可加速CKKS计算是有希望的,但是由于昂贵的操作称为Boottrapping,CKKS计算继续表现不佳。虽然已经做出了几项努力来加速自举,但它仍然是主要的性能瓶颈。这种性能瓶颈的原因之一是,与计算Boottrapping算法的CKK的非自举一部分不同,是固有的顺序,并且在数据中显示了相互依存关系。为了应对这一挑战,在本文中,我们引入了使用混合方案切换方法的加速器。HEAP使用CKKS方案进行非引导步骤,但是在执行CKKS方案的自举步骤时,请切换到TFHE方案。通过从单个rlwe密文中提取系数来表示多个LWE密文,从而向TFHE方案转变为TFHE方案。我们将自举函数合并到盲骨操作中,并同时将盲的操作应用于所有LWE密文。堆中的方法是硬件的不可知论,可以映射到具有多个计算节点的任何系统。随后可行地进行引导的并行执行是可行的,因为不同的LWE密文之间没有数据依赖性。使用我们的方法,我们需要较小的自举键,从而从键的主内存中读取约18×少量数据。此外,我们在堆中介绍了各种硬件优化 - 从模块化算术级别到NTT和盲核数据PATAPATH优化。为了评估HEAP,我们在RTL中实现了堆,并将其映射到一个FPGA系统和八型FPGA系统。我们对自举操作的堆的全面评估显示为15。与Fab相比, 39×改进。 同样,对逻辑回归模型训练的堆的评估显示了14。 71×和11。 与Fab和Fab-2实现相比, 57×改进。 索引术语 - ckks,tfhe,方案切换,自举,FPGA加速39×改进。同样,对逻辑回归模型训练的堆的评估显示了14。71×和11。57×改进。索引术语 - ckks,tfhe,方案切换,自举,FPGA加速
密码学一直是人类的长期痴迷,可以追溯到几个世纪。从古老的象形文字到现代数字加密,人们一直在寻求确保和破译信息的方法。在这一任务中的一个关键时刻是凯撒密码的发展,以朱利叶斯·凯撒(Julius Caesar)的名字命名,后者在他的私人通信中巧妙地利用了它。Caesar Cipher通过将字母的每个字母移动一个固定数字来工作,从本质上将原始消息转换为炒版的版本,该版本使其内容物保持在不需要的收件人中。尽管按照当今的标准很简单,但凯撒密码在加密技术的发展中标志着一个重要的里程碑,并为更复杂的加密方法奠定了基础。通过探索这个密码的工作方式,我们可以深入了解密码学的基本原理,并了解基本思想如何导致复杂的通信安全系统。古代代码的艺术在于简单性,其中一种方法是凯撒密码。这种技术在整个历史上使用,涉及三个转移,使其易于理解和应用。要开始,选择一个偏移号 - 在此示例中,让我们使用三个。这意味着每个字母都会向下移动三个位置。以“ Hello”之类的简单消息。这是我们要加密的原始消息。现在,将三个转移应用于每个字母:“ h”变为“ k”,“ e”变为“ h”,“ l”变为“ o”,依此类推。每个字母通过三个斑点跳下字母。应用此班次后,我们的消息“ Hello”变成了“ Khoor”。这是密文 - 我们原始消息的加密版本,现在隐藏在保密中。可以将密文可以牢固地发送给不知道Shift键的接收者。在不知道的情况下,对密文的解密将是具有挑战性的。解密,收件人通过将每个字母的三个位置从“ khoor”转移回“ Hello”来扭转此过程。这种从明文到密文的转变,然后又是凯撒密码工作原理的本质。虽然不反对现代的密码分析方法,但Caesar Cipher可以作为引入加密原理和秘密交流艺术的工具。凯撒密码:密码学的一台标准,理解拦截器是否猜测凯撒密码的钥匙,它们可以轻松地解密信息,从而使其成为一种不太确定的通信方法。尽管有这一限制,凯撒密码仍然是说明基本加密和解密原理的宝贵工具。它的简单性使其成为那些冒险进入密码科学的人的绝佳基础。**探索变化**虽然经典的凯撒密码使用固定的三个移动,但改变了这种转变可以增强其安全性。通过调整偏移值,密码变得对拦截更具抵抗力,因为意外接收者必须破解模式。探索不同的转变揭示了这种古老的加密技术的灵活性和适应性。不同的**偏移值**一个一个移动的移动将“ A”移至“ B”,而在字母内的25个换档,将“ A”移至“ Z”。每个移位值都会产生独特的加密模式,展示了自定义的潜力。向前移动的字母向下移动字母,而向后移动将它们向上移动,增加了另一层复杂性。**使用随机移动或单个消息中多个偏移的随机和多个偏移**可能会显着使解密过程复杂化。例如,每个字母可能会以不同的数量移动,这是由仅向发件人和接收者知道的秘密模式决定的。这种方法增加了一层阴谋,并充当了更高级加密概念的桥梁。**旋转偏移**另一种变化涉及旋转偏移,在每个字母加密后的值变化。例如,首字母可能会在一定数量的班次之后向后移动一个,第二个字母,第二个字母。这些修改表明,即使在凯撒密码的约束中,创造力和增加的复杂性也可以得到。**优势和局限性**虽然Caesar Cipher由于易于解密而不是安全通信的强大工具,但它仍然是理解基本加密原则的绝佳操场。它的简单性使其成为那些寻求了解加密和解密技术的人的可访问切入点。Caesar Cipher是密码学的基本工具,可介绍更广泛的加密原理背景。它的简单性使其成为基本概念(例如替代,转移和加密方法)的绝佳教育资源。然而,它脆弱的隐式分析和缺乏关键复杂性使其不切实际地确保敏感信息。尽管如此,它还是对更先进的技术的垫脚石,并且在日常生活中仍然是一种基本加密和教育目的的工具。Caesar Cipher的局限性提供了一个宝贵的例子,说明了设计安全的加密方法所面临的挑战,使其成为秘密交流历史的一个启发性方面。Caesar Cipher提供了一个简单而令人着迷的挑战,该挑战已在益智游戏,逃生室和寻宝游戏中使用,以将历史阴谋与加密难题相结合。对于低级安全情况,这种古老的加密方法仍然可以用于基本的编码任务,例如创建简单的密码或编码Trivia答案。密码的文化意义和易用性使其成为讲故事的人和艺术家的诱人选择。凯撒密封件还可以轻柔地介绍编码概念和算法思维,对程序员和计算机爱好者。以编程语言实现密码可能是将历史知识与实际编码技能相结合的初学者友好项目。尽管其保护国家秘密的能力有限,但凯撒密码的遗产仍是一种教育工具,娱乐性难题和通往加密世界的门户。将其与其他加密技术进行比较突出了加密方法的演变,并强调了数字时代必不可少的安全性和复杂性的进步。像简单的替代密码一样,凯撒密码用另一个字符代替每个字符,但使用统一的偏移而不是复杂的映射。此方法比现代加密技术更容易受到频率分析的影响。threstose cipher在明文中重新排列字母,创建了不同级别的复杂性,可以将其与替换方法结合使用,以提高安全性。Vigenère密码是凯撒密码的演变,使用了基于关键字字母的多个凯撒密码。这种多性化方法大大提高了复杂性和安全性,从而使其不易受到简单的密码分析的影响。对称键加密采用AE等技术,利用单个键进行加密和解密。这些算法在二进制数据上运行,使其比凯撒密码更安全,适合快速加密大量数据。公钥加密使用单独的密钥 - 公共加密和私有键盘进行解密。此方法对于确保Internet通信(包括文件传输和数字签名)至关重要。将这些高级技术与凯撒密码进行比较,突出了其简单性和加密实践中的重大进步。虽然凯撒密码为理解基本加密概念的基础奠定了基础,但现代方法已扩展了这些原则,以满足日益数字世界中安全沟通的需求。与凯撒密码互动,互动练习可能是掌握其力学的有趣而实用的方法。从简单角色转移到复杂算法的演变反映了计算能力的进步以及对更强大,更安全的加密解决方案的增长需求。这些练习包括手动加密和解密,创建使过程自动化的程序,破坏密码而不知道密钥,编程密码,探索变化和小组练习。简单的密码仍然很重要:在当今的高级加密时代,凯撒密码的持久意义很容易忽略凯撒·密码(Caesar Cipher)等简单密码的重要性。但是,这些基本的加密方法仍然以各种方式相关。历史上将像凯撒密码这样的古代密码的使用背景下,可以更深入地了解它们的意义和局限性。互动练习提供了一种动手学习的方法,可以学习凯撒密码,而不是理论上的理解到实际应用。简单的密码是教育工具,提供了对安全通信的复杂性和挑战的见解。在一个以复杂的加密算法为主的时代,简单密码的未来,像凯撒密码这样的简单密码的作用和未来似乎尚不清楚。但是,这些基本的加密方法仍然在几种方面相关。他们为学生和初学者提供了一种清晰而有形的方式,以掌握加密和解密的基本原则。教育价值凯撒密码和类似的简单密码是密码学的基本教学工具。它的简单性和历史背景使其为这些目的而具有吸引力。,他们通过为学生和初学者提供了一种清晰而有形的方式来理解更复杂的系统的基础,以掌握加密和解密的基本原理。概念理解简单的密码体现了密码学的基本概念,例如密钥管理,保密的重要性以及对各种攻击的脆弱性。了解这些密码提供了有关加密方法如何发展以应对日益严重的安全挑战的历史观点。算法思维简介实现诸如凯撒密码之类的简单密码的概论对于个人学习编程或算法问题解决的绝佳练习。它弥合了理论概念与实际应用之间的差距,从而促进了逻辑思维和编码技能。文化和娱乐用途Caesar Cipher继续在文化和娱乐环境中找到景点,例如解决难题,游戏和讲故事。启发安全意识理解像凯撒密码这样的密码的基础知识可能是踏板的石头,以欣赏日常数字交互中强大加密的重要性。持续的相关性是历史文物和替代密码的基本例子,凯撒密码仍然是密码研究研究中的一个感兴趣的话题。它可以提醒着该领域的起源和加密技术的持续演变。加密方法的演变导致了精致的系统保护我们的数字领域,但它们的主要作用现在在于密码学中的教育和概念意义。总而言之,虽然像凯撒密码这样的简单密码不再用于保护敏感信息,但它们在教育,文化背景和加密世界的介绍中继续发挥重要作用。一种常见的历史密码技术涉及将每个字母的固定位置转移到字母表上,朱利叶斯·凯撒(Julius Caesar)在其私人信件中著名地使用了字母。
只要知道受害者的电子邮件地址,就可以接管该组织中的任何用户帐户。” (网络安全新闻)Fortinet用户在过去和现在看到活跃的零日期警告“ Fortinet已发布补丁,以修复攻击者积极利用的零日漏洞。分别警告客户在攻击者泄漏配置详细信息(包括防火墙规则和纯文本VPN密码)之后要查看其基础架构,以使用15,000个设备。” (今天的数据泄露)HPE在所谓的Intelbroker Hack中暴露了敏感的数据“可疑的塞尔维亚 - 奥里吉(Serbian-Origin Hacker)正在提出出售据称从HPE偷走的敏感数据……包括源代码,用户数据和访问密钥。” (网络安全审查)Microsoft于10月在Windows 10上结束了对Office应用程序的支持。“ Microsoft 365应用程序将在2025年10月14日以后在Windows 10设备上得到支持。要使用Microsoft 365应用程序,您需要升级到Windows 11…此公告还适用于无需Microsoft 365订阅的独立版本,包括Office 2024,Office 2021,Office 2021,Office 2019和Office 2016。” (吹牛计算机)MINTSLOADER MALSPAM广告系列会导致Boink和Boinc自2024年7月出现以来,跟踪了1,300多个活动的互联网协议地址。 (今天的数据泄露)甲骨文发行2025年1月的关键补丁更新解决了320个安全漏洞“已经观察到donot apt组滥用了字母平台,该平台通常提供用于发送推送通知,应用程序内消息,电子邮件和短信的工具。“ Esentire威胁响应单元(TRU)发现了一个新的恶意软件活动,该活动利用了一种称为Mintsloader的工具来提供第二阶段有效载荷,包括STEALC恶意软件和伯克利开放基础架构网络计算(BOINC)客户端。” (Esentire)新的Mirai变体目标是相机和路由器中的缺陷。 “ Mirai恶意软件的一种新变体正在利用摄像头和路由器中的漏洞来渗入设备,下载有效载荷并将其集成到扩展的botnet中。“ Oracle已发布了2025年1月发布的关键补丁更新预发行公告,并提前通知了计划于2025年1月21日星期二发布的关键安全更新。” (安全在线)研究人员发现,新的Android恶意软件链接到Donot Team APT组。该小组利用OneSignal通过通知提供网络钓鱼链接。” (安全事务)Windows Bitlocker Bug公开了AES-XTS加密“ Windows Bitlocker全盘加密工具中的一个中等错误已将Bitlocker加密系统暴露于针对AES-XTS加密模式的新型随机攻击。新的漏洞-CVE- 2025-21210-强调了对全盘加密系统攻击的复杂性。剥削后,它可以让攻击者操纵密文块,从而导致敏感数据以纯文本写入磁盘。” (SC世界)