•假设A想要向B发送消息,该消息称为明文。•现在,为了避免阅读明文,使用算法和秘密键(在1)加密明文。•此加密的宣传文字称为Ciphertext。使用相同的秘密密钥和加密算法反向运行(在2),•b可以获取a的明文,因此读取消息并保持安全性。•常规加密主要具有5种成分:
SM2是一种不对称的加密算法,也可用于直接加密数据。通常,A使用公共密钥对A文件或数据进行加密,将Ciphertext传递给B,并使用相应的私钥将其解密。SM2加密和解密仅适用于较短的文本。对于较大的文件,该过程可能非常慢。根据SM2算法的使用规范,需要对加密的密文进行ASN.1编码。为此,我们提供函数SM2_ENCRYPT_ASNA1和SM2_DECRYPT_ASNA1。此外,某些方案使用C1,C2,C3的不同安排,因此我们还提供功能SM2_ENCRYPT_C1C2C3和SM2_DECRYPT_C1C2C3。为了促进二进制数据的传输,我们还提供了将数据加密到十六进制或base64字符串中并从中解密的功能。
摘要。在范围内,在量词后加密术中,针对侧道通道攻击的高度对策的高成本,有些作品具有基于低成本检测的对策。这些对策试图检测出恶意产生的输入密文,并通过丢弃密文或秘密键对它们做出反应。在这项工作中,我们查看了两个先前提出的低成本对策:密文理智检查和解码失败检查,并证明了对这些方案的成功攻击。我们表明,第一个对策可以在几乎没有开销的情况下被打破,而第二个对策则需要更详细的攻击策略,依赖于有效的chen ciphertexts。因此,在这项工作中,我们提出了第一个基于Ciphertext的侧面通道攻击,该攻击仅依赖于有效的密文来用于密钥恢复。作为这次攻击的一部分,我们论文的第三个贡献是改进的求解器,该求解器从使用解密过程中的侧向通道泄漏构建的线性不等式中检索了秘密钥匙。我们的求解器是Pessl和Prokop和后来Delvaux对最先进的信念传播求解器的改进。我们的方法更简单,更易于理解并且具有较低的计算复杂性,而与以前的方法相比,不平等现象的一半不到一半。关键字:基于晶格的密码学·侧通道攻击·Kyber·键封装机制
在对称键密码学的设计中,克劳德·香农(Claude Shannon)在他的开创性论文“交流理论” [21]中引入了“混乱和扩散”的概念。混淆层隐藏了密钥和密文之间的关系,而扩散层的目标是掩盖密文和纯文本之间的关系。可以通过多余[22]或使用最大距离可分离(MDS)矩阵来实现完美的扩散。MDS矩阵由于其最大分支数量提供了完美的扩散。因此,MDS Ma-Trices在防止块和线性攻击的安全性和线性攻击方面起着重要作用。许多现代时代的密码,例如AES [10],两个菲斯[20],Square [9],Shark [18]等,以及Hash功能,例如Whirlpool [1],Photon [12]依靠MDS矩阵来增强安全性。
在1976年,W。Dioure和M. E. Hellman [12]设定了公共密钥密码学的定义和原则。两年后,RSA公共密钥密码系统由R. L. Rivest,A。Shamir和L. Adleman [34]发明。这些事件不仅在秘密通信中开设了一个新时代,而且标志着数学密码学的诞生1。从那时起,已经连续发现了其他几个数学加密系统,包括Elgamal Cryptosystem,椭圆曲线加密系统,Ajtai-Dwork加密系统,GGH加密系统,NTRU密码系统和LWE CRYP-TOSOSYSTEM和LWE CRYP-TOSOSYSTEM。在过去的半个世纪中,数学密码学(公共密钥密码学)在计算机和互联网的现代技术中发挥了至关重要的作用。同时,它已发展为数学和密码学之间的积极跨学科研究(见[18,20])。在Di-e-Hellman 2之前,任何秘密通信的分解过程和解密过程都使用了相同的秘密密钥。这种密码称为对称密码。假设鲍勃想向爱丽丝传达秘密信息,他们必须分享一个秘密钥匙k。鲍勃首先将密钥k的消息m拼凑到密文C上,然后通过某个频道将其发送到爱丽丝。当爱丽丝收到密文C时,她使用秘密键K将其解开并重新构成M。在此过程中,如果通信渠道不安全,则他们的对手前夕不仅可以拦截Ciphertext C,还可以拦截秘密密钥K,然后重建其秘密消息m。
6 K r←钥匙; (7!i≤noenc(x [i]:clearText):=让z [i] = eng(x [i],k)返回(z [i])| 8!i'≤n'odec(y:ciphertext):= 9如果定义(损坏),则返回(dec(y,k))else 10 else 10查找j≤nsidthat定义(x [j],z [j],z [j])∧z [j])= y 11 = y 11 then return(x [j]) 12 ocorrupt():=让腐败= true返回(k))
我们提出了一种名为NTRU + PKE的新的基于NTRU的公钥加密(PKE)方案,该方案有效地纳入了PKE(称为FO PKE)的Fujisaki-Okamoto转换,以实现量子随机Oracle模型(QROM)中选择选择的ciphertext Security。虽然NIST PQC标准化过程中的首轮候选人Ntruencrypt被证明是随机Oracle模型(ROM)中的ciphertext secure,但它缺乏QROM的相应安全性证明。我们的工作扩展了Kim和Park于2023年提出的最近的ACWC 2转换的能力,证明了ACWC 2转化方案可以作为应用FO PKE的足够基础。具体来说,我们表明ACWC 2转化方案达到了(弱)γ-传播,这是构建Ind -CCA安全PKE方案的重要属性。此外,我们提供了QROM中FO PKE安全性的第一个证明。最后,我们表明可以将FO PKE进一步优化为更有效的转换,即FO PKE,从而消除了在解密期间重新掺入的需求。通过使用适当的参数化实例化ACWC 2转化方案,我们构造了NTRU + PKE,该方案支持256位消息加密。我们的实现结果表明,在大约180位的安全级别上,NTRU + PKE的速度比K YBER + AES-256-GCM快2倍。
雪崩效应是密码学的一个基本原理,它确保输入的微小变化(例如单个位更改)会导致输出的显著变化。本研究通过分析明文和密钥中单位和双位变化的影响,检查了简化数据加密标准 (S-DES) 中的雪崩效应。S-DES 是数据加密标准的一个简化变体,可作为理解密码原理的教育工具。通过实证测试,我们观察到 8 位明文中的单个位更改如何导致生成的密文发生显著变化,证明了输入和输出之间的非线性关系。分析扩展到双位变化,揭示了持续显著的雪崩效应,其中两个改变的位比单个位变化产生更大的密文变化。此外,我们探讨了密钥中位变化的含义,展示了这些修改如何进一步破坏加密过程并增强安全性。
在上述许多密码系统中,在宣传中更改一个字母在密文中完全改变了一个字母。在转移,仿射和替代密码中,密文中的一封给定信总是来自纯文本中的一个字母。这极大地有助于使用频率分析找到密钥。在Vigenere系统中,使用与键长度相对应的字母块的使用使频率分析更加困难,但仍然可能,因为每个块中的各种字母之间没有相互作用。块密码通过同时加密几个字母或数字的块来避免这些问题。在授权块中更改一个char acter,应在相应的密文块中更改所有字符。第2.6节中的Playfair密码是一个块密码的简单示例,因为它需要两个字母的块并将其加密到两个字母的块中。更改宣传对的一个字母将始终更改至少一个字母(通常是两个字母)的密文对。但是,两个字母的块太小而无法安全,例如,频率分析通常是成功的。本书稍后将在本书后面将处理的许多现代密码系统都是块密码。例如,DBS在64位的块上运行。AES使用128位的块。RSA使用块长几百位,具体取决于所使用的模量。所有这些块长度都足够长,可以保护诸如频率分析之类的攻击。这称为电子代码簿(ECB)模式。使用块密码的标准方法是独立地将纯文本块转换为ciphertcxt的块。但是,有多种方法可以在随后的明文块的加密中使用从密文的块进行反馈。这导致了密码块链(CBC)模式和密码反馈(CFB)操作模式。第4.5节中讨论的这些矿石。在本节中,我们讨论了山地密码,这是莱斯特·希尔(Lester Hill)在1929年发泄的街区密码。在实践中似乎从来没有太多使用。其重要性是,也许是第一次在密码学中使用代数方法(线性代数,模块化算术)。我们将在后面的章节中看到,现在代数方法在该主题中占据了中心位置。
摘要。本文介绍了Smaug-T,这是一种基于晶格的Quantu-Tum键交换算法,该算法提交给了韩国量子后加密术(KPQC)的第2轮。Smaug-T是根据KPQC第1轮推荐通过合并Smaug和Tiger设计的。该算法基于模块晶格中定义的MLWE和MLWR问题的硬度,并使用Smaug选择的稀疏秘密。与原始的Smaug参数集一起,我们引入了适合IoT环境的计时器(使用错误对帐)参数集。具有恒定的C参考插入,Smaug-t可达到比kyber and Saber小的12%和9%的密码,分别超过运行时间,高达103%和58%。与Sable相比,Smaug-t具有相同的密文尺寸,但公共密钥较大,这在公共密钥尺寸与性能之间取决于权衡; Smaug-T在具有可比安全性