摘要 — 脑机接口 (BCI) 允许从大脑到外部应用程序直接通信,以自动检测认知过程,例如错误识别。错误相关电位 (ErrPs) 是当一个人犯下或观察到错误事件时引发的一种特殊大脑信号。然而,由于大脑和记录设备的噪声特性,ErrPs 会因各种其他大脑信号、生物噪声和外部噪声的组合而有所不同,这使得 ErrP 的分类成为一个不简单的问题。最近的研究揭示了导致 ErrP 变化的特定认知过程,例如意识、体现和可预测性。在本文中,我们探索了在通过改变给定任务的意识和体现水平而生成的不同 ErrP 变化数据集上进行训练时分类器可迁移性的性能。特别是,我们研究了当由相似和不同的任务引发时观察性和交互性 ErrP 类别之间的转移。我们的实证结果从数据角度对 ErrP 可转移性问题进行了探索性分析。
摘要。由于其普遍适用性,机器学习模型(ML)在过去二十年中一直是一个热门话题。尽管它们有效,但一些ML模型表现出效率低下,尤其是在大数据分类中。此外,某些ML模型在某些小数据集上有效。在这方面,由于在线数据的可访问性越来越大,自动数据分类技术吸引了很多研究兴趣。因此,在文本分类字段中已经开发了许多独特的学习策略。基于质心的分类器(CBC)是其中最广泛使用的技术之一。专注于增强NC分类器时,本文旨在简要研究某些ML模型对中小型数据集分类的影响。在这些模型中:N-中心技术(NC)作为简单设计的分类器,支持向量机(SVM)和多项式贝叶斯(MNB)。最重要的是,本文通过与两个相似性度量的集成,即基于集合理论的相似性度量(STB-SM)和改进的余弦相似度量(ISC),引入了NC的结合变化。在有效性和效率方面,综合NC分类器的性能被认为是有希望的。
摘要 - 成功的运动象征脑 - 计算机界面(MI-BCI)算法要么提取大量手工制作的功能,要么训练分类器,要么在深度卷积的卷积新神经网络(CNNS)内组合特征伸缩和分类。这两种方法通常都会导致一组实用值的权重,在针对紧密资源约束设备上实时执行时会构成挑战。我们为每种方法提出了方法,允许将实价的权重转换为有效推断的二进制数字。我们的第一个方法基于稀疏的躁郁症随机投影,将大量的真实价值的Riemannian协方差投射到二进制空间,在该空间中,也可以通过二进制重量来学习线性SVM分类器。通过调整二进制嵌入的尺寸,我们与具有浅色oat16权重的型号相比,在4级MI(≤1.27%)中达到了几乎相同的精度,但提供了更紧凑的模型,具有更简单的操作以执行。第二,我们建议使用内存增强的神经网络(MANN)进行Mi-BCI,以使增强的内存被二进制。我们的方法使用双极随机投影或学习的投影替换了完全连接的CNN层。我们对Mi-BCI已经紧凑的CNN EEGNET的实验结果表明,使用随机投影可以通过1.28×at in ISO精度将其压缩。另一方面,使用学习的投影可提供3.89%的精度,但记忆尺寸增加了28.10倍。
摘要:脑机接口(BCI)是大脑与外界进行通信的强大系统。传统的BCI系统仅基于EEG信号工作。最近,研究人员使用EEG信号与其他信号的组合来提高BCI系统的性能。在这些信号中,EEG与fNIRS的结合取得了良好的效果。在大多数研究中,仅将EEG或fNIR视为链状序列,并且没有考虑相邻信号之间的复杂相关性,无论是时间还是通道位置。在本文中,引入了一个深度神经网络模型,通过引入时间和空间特征来识别人脑的精确目标。所提出的模型结合了EEG和fNIRS信号之间的空间关系。这可以通过将这些链状信号的序列转换为分层的三阶张量来实现。测试表明,所提出的模型的精度为99.6%。 关键词:EEG,fNIRS,混合BCI,深度学习,空间,时间。
摘要。乳腺癌长期以来一直是女性死亡的主要原因。由于能够记录基因表达数据的 RNA 测序工具的出现,现在诊断、治疗和预后已成为可能。分子亚型与制定临床策略和预后密切相关,本文重点介绍如何使用基因表达数据将乳腺癌分为四种亚型,即 Basal、Her2、LumA 和 LumB。在第 1 阶段,我们提出了一种基于深度学习的模型,该模型使用自动编码器来降低维数。通过使用自动编码器,特征集的大小从 20,530 个基因表达值减少到 500 个。该编码表示被传递到第二阶段的深度神经网络,以将患者分为四种乳腺癌分子亚型。通过部署第 1 阶段和第 2 阶段的组合网络,我们已经能够在 TCGA 乳腺癌数据集上获得 0.907 的平均 10 倍测试准确率。所提出的框架在 10 次不同的运行中都相当稳健,如分类准确度的箱线图所示。与文献中报道的相关工作相比,我们取得了有竞争力的结果。总之,所提出的基于两阶段深度学习的模型能够准确地对四种乳腺癌亚型进行分类,突出了自动编码器推断紧凑表示的能力和神经网络分类器正确标记乳腺癌患者的能力。
多变量时间序列分类问题在生物学和金融等多个领域越来越普遍和复杂。虽然深度学习方法是解决这些问题的有效工具,但它们往往缺乏可解释性。在这项工作中,我们提出了一种用于多变量时间序列分类的新型模块化原型学习框架。在我们框架的第一阶段,编码器独立地从每个变量中提取特征。原型层在生成的特征空间中识别单变量原型。我们框架的下一阶段根据多变量时间序列样本点与这些单变量原型的相似性来表示它们。这会产生一种固有可解释的多变量模式表示,原型学习应用于提取代表性示例,即多变量原型。因此,我们的框架能够明确识别各个变量中的信息模式以及变量之间的关系。我们在具有嵌入模式的模拟数据集以及真实的人类活动识别问题上验证了我们的框架。我们的框架在这些任务上实现了与现有时间序列分类方法相当或更优异的分类性能。在模拟数据集上,我们发现我们的模型返回与嵌入模式一致的解释。此外,在活动识别数据集上学习到的解释与领域知识一致。
摘要 — 用户-假肢接口 (UPI) 的复杂性,用于控制和选择主动上肢假肢的不同抓握模式和手势,以及使用肌电图 (EMG) 所带来的问题,以及长时间的训练和适应,都会影响截肢者停止使用该设备。此外,开发成本和具有挑战性的研究使得最终产品对于绝大多数桡骨截肢者来说过于昂贵,并且经常为截肢者提供无法满足其需求的界面。通常,EMG 控制的多抓握假肢将一组肌肉的特定收缩的具有挑战性的检测映射到一种抓握类型,将可能的抓握次数限制为可区分的肌肉收缩次数。为了降低成本并以定制方式促进用户和系统之间的交互,我们提出了一种基于图像和 EMG 对象分类的混合 UPI,与 3D 打印上肢假肢集成,由 Android 开发的智能手机应用程序控制。这种方法可以轻松更新系统,并降低用户所需的认知努力,从而满足功能性和低成本之间的权衡。因此,用户可以通过拍摄要交互的物体的照片来实现无数预定义的抓握类型、手势和动作序列,只需使用四种肌肉收缩来验证和启动建议的交互类型。实验结果表明,假肢在与日常生活物体交互时具有出色的机械性能,控制器和分类器具有很高的准确性和响应能力。
摘要:空气分级装置与其他用于分离材料的系统相比具有明显的优势。它们最大限度地提高了磨机的产能,因此构成了降低破碎和研磨操作能耗的有效方法。由于其性能的改进具有挑战性,因此开发一种有效的建模系统具有重要的实际意义。本文介绍了一种新颖的基于知识的散装材料分类 (FLClass) 系统。研究中考虑了广泛的操作参数:进料材料的平均质量和 Sauter 平均直径、分级机转子速度、工作气压和测试进行时间。输出变量是 Sauter 平均直径和分类产品的切割尺寸,以及工艺性能。该模型已根据实验数据成功验证。测量数据和预测数据之间的最大相对误差低于 9%。所提出的基于模糊逻辑的方法允许对要进行的过程进行优化研究。对于考虑的输入参数范围,分类过程的最高性能几乎等于 362 g/min。据我们所知,本文是公开文献中第一篇涉及模糊逻辑方法对散装材料空气分类过程进行建模的论文。
许可: 本作品根据 Creative Commons Attribution 4.0 国际许可进行许可。阅读完整许可
摘要 — 图像分类在遥感中起着重要作用。地球观测 (EO) 不可避免地进入了大数据时代,但对计算能力的高要求已经成为使用复杂机器学习模型分析大量遥感数据的瓶颈。利用量子计算可能有助于解决这一挑战,因为它可以利用量子特性。本文介绍了一种混合量子-经典卷积神经网络 (QC-CNN),它应用量子计算有效地从 EO 数据中提取高级关键特征以进行分类。此外,采用振幅编码技术减少了所需的量子位资源。复杂度分析表明,与经典模型相比,所提出的模型可以加速卷积运算。通过 TensorFlow Quantum 平台,使用不同的 EO 基准(包括 Overhead-MNIST、So2Sat LCZ42、PatternNet、RSI-CB256 和 NaSC-TG2)对模型性能进行评估,结果表明,该模型能够取得比经典模型更优的性能,且具有更高的泛化能力,验证了 QC-CNN 模型在 EO 数据分类任务上的有效性。