有几种方法可以质疑物理系统状态的具体量子力学特性。首先,人们可能会问它的相干性有多强。量子态相干叠加的存在是物质波干涉现象的起源,因此,这是一个典型的量子特征,对此提出了几种测量和证据(有关最近的综述,请参阅 [1])。其次,当所研究的系统是二分或多分系统时,其组成部分的纠缠是另一个内在的量子特征。有大量文献探讨了各种测量方法来量化给定状态中包含的纠缠量 [2–14]。最后,对于玻色子量子场的模式,出现了第三种非经典性概念,通常称为光学非经典性。根据格劳伯的观点,光场的相干态(及其混合态)被视为“经典”,因为它们具有正的格劳伯-苏达山 P 函数 [15]。从那时起,多年来人们开发了多种光学非经典性测量方法,以测量与光学经典状态的偏离 [15–41]。光场量子态的这三种不同的、典型的量子属性被认为可作为量子信息或计量学的资源 [38, 39, 42–44]。那么自然而然地就会出现一个问题:这些属性之间有着什么样的定量关系。例如,在 [45] 中,给出了使用非相干操作从具有给定相干度的状态中可以产生多少纠缠的界限:这将相干性与纠缠联系起来。在 [46] 中,状态的相干性和光学非经典性被证明是相互关联的:远对角线密度矩阵元素 ρ ( x, x ′ ) 或 ρ ( p, p ′ ) 的显著值(称为“相干性”)是状态的光学非经典性的见证。我们的目的是建立多模玻色子场的光学非经典性和二分纠缠之间的关系。直观地看,由于所有光学经典态都是可分离的,因此强纠缠态应该是强光学非经典态。相反,仅具有弱光学非经典性的状态不可能高度纠缠。为了使这些陈述精确且定量,我们需要测量纠缠度和光学非经典性。作为评估二分纠缠的自然指标,我们使用形成纠缠 (EoF) [4]。关于光学非经典性,我们使用最近引入的单调性 [38, 39],我们将其称为总噪声单调性 ( M TN )。它是通过将纯态上定义的所谓总噪声∆x2+∆p2扩展到混合态(通过凸屋顶结构,参见(1))得到的,对于该值来说,它是光学非经典性的一个完善的量度[38–41]。我们的第一个主要结果(定理 1 和 1')在于,对于 n = n A + n B 模式的二分系统的任意状态 ρ,EoF(ρ) 关于 M TN (ρ) 的函数有一个上限。特别地,当 n A = n B = n/ 2 时,这个上限意味着包含 m 个纠缠比特的状态必须具有光学非经典性(通过 M TN 测量),并且该光学非经典性随 m 呈指数增长。作为应用,我们表明,当可分离纯态撞击平衡光束分束器时可以产生的最大纠缠度由该状态的光学非经典性的对数所限制,通过 M TN 测量。换句话说,虽然众所周知分束器可以产生纠缠 [28, 47, 48],但纠缠量受到本态光学非经典性程度的严重限制。定理 1 和 1' 中的界限可以很容易地计算出纯态的界限,因为 EoF 与还原态的冯·诺依曼熵相重合,而 M TN 与总噪声相重合。然而,对于混合态,界限与两个通常难以评估的量有关。我们的第二个主要结果(定理 2)解决了这个问题
在训练中,该工具对结果进行分类的准确率为 85%,而在使用新数据的最终测试中,该工具对哪些参与者患精神病的风险较高进行预测的准确率为 73%。根据结果,该团队认为,为被确定为临床高风险的人提供脑部 MRI 扫描可能有助于预测未来精神病的发病率。
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。
最近,量子化学计算与机器学习的结合在加速新材料发现方面表现出了巨大的潜力。虽然这种混合方法与传统方法相比消耗的资源和时间更少,但它仍然面临着根本性的挑战。这些挑战包括训练数据集的大小和质量限制,以及使用离散优化技术有效探索大型化学空间的困难。
大脑计算机界面(BCI)应用提供了一种直接的方法,将人脑活动映射到外部设备的控制上,而无需进行物理运动。这些系统,对于医疗应用至关重要,也对非医疗应用程序有用,主要使用非侵入性记录的EEG信号,用于系统控制,并需要算法将信号转换为命令。传统的BCI应用程序在很大程度上取决于针对特定行为范式量身定制的算法,并使用具有多个通道的EEG系统来收集数据。这使可用性,舒适性和负担能力复杂化。更重要的是,广泛的培训数据集的有限可用性限制了将收集到的数据分类为行为意图的强大模型的开发。To address these challenges, we introduce an end-to-end EEG classification framework that employs a pre-trained Convolutional Neural Network (CNN) and a Transformer, initially designed for image processing, applied here for spatiotemporal represen- tation of EEG data, and combined with a custom developed automated EEG channel selection algorithm to identify the most informative electrodes for the process, thus reducing data dimensionality, and放松主题的舒适性,并改善了脑电图数据的分类性能到受试者的意图。我们使用两个基准数据集(EEGMMIDB和OpenMiir)评估了我们的模型。与现有的最新脑电图分类方法相比,我们取得了卓越的性能,包括常用的EEGNET。这项研究不仅可以推进BCI领域,而且还为BCI应用程序提供了一个可扩展和负担得起的框架。我们的结果表明,OpenMiir的分类精度提高了7%,EEGMMIDB的分类为1%,平均值分别达到81%和75%。重要的是,这些改进是通过较少的记录渠道和较少的培训数据获得的,这证明了一个框架,可以从培训数据的量以及大脑信号所需的硬件系统的简单性方面支持更有效的BCI任务方法。
利用代码调制视觉诱发电位 (c-VEP) 形式的非周期性闪烁视觉刺激代表了反应性脑机接口 (rBCI) 领域的一项关键进步。c-VEP 方法的主要优势在于模型的训练与目标的数量和复杂性无关,这有助于减少校准时间。尽管如此,现有的 c-VEP 刺激设计可以在视觉用户体验方面进一步改进,同时实现更高的信噪比,同时缩短选择时间和校准过程。在本研究中,我们介绍了一种创新的代码 VEP 变体,称为“突发 c-VEP”。这种原创方法涉及以故意缓慢的速率呈现短暂的非周期性视觉闪光,通常每秒闪光两次到四次。这种设计背后的原理是利用初级视觉皮层对低级刺激特征的瞬时变化的敏感性来可靠地引发一系列独特的视觉诱发电位。与其他类型的快节奏代码序列相比,突发 c-VEP 表现出良好的特性,可以使用卷积神经网络 (CNN) 实现高按位解码性能,从而有可能在需要更少校准数据的情况下实现更快的选择时间。此外,我们的研究重点是通过减弱视觉刺激对比度和强度来降低 c-VEP 的感知显着性,以显著提高用户的视觉舒适度。通过涉及 12 名参与者的离线 4 类 c-VEP 协议测试了所提出的解决方案。按照因子设计,参与者被指示关注 c-VEP 目标,其模式(突发和最大长度序列)和幅度(100% 或 40% 幅度深度调制)在实验条件下被操纵。首先,全幅突发 c-VEP 序列表现出更高的准确度,范围从 90.5%(使用 17.6 秒的校准数据)到 95.6%(使用 52.8 秒的校准数据),而 m 序列的准确度为 71.4% 到 85.0%。两种代码的平均选择时间(1.5 秒)与之前研究报告相比更为有利。其次,我们的研究结果表明,降低刺激强度仅会稍微降低突发代码序列的准确度至 94.2%,同时会显着改善用户体验。总之,这些结果证明了所提出的突发代码在性能和可用性方面推进反应式 BCI 的巨大潜力。收集的数据集以及所提出的 CNN 架构实现均通过开放存取存储库共享。
在医学领域,年代年龄被广泛用作描述人的指标。它描述了健康器官应遵循的参考曲线。与该参考的偏差可能与不同的因素有关,例如基因,环境,生活方式和疾病的相互作用1。为了衡量这种偏差,已经创建了生物年龄(BA)的概念。这是基于各种高级策略2,3,4的个人年龄的估计,并有望考虑上述所有因素。因此,相对于年龄,加速(或延迟的)衰老过程导致BA的较高(或较低)值。BA的分析可以与全身系统或特定器官相关联。全身评估方法通常使用非成像数据(例如,DNA甲基化模式5,蛋白质6),但经常难以解决单个器官之间衰老的变化。到此为止,Tian等人。最近提出了一种采用多模式脑成像,生理测量和血液表型来构建多机器人衰老网络8的新型方法。他们的研究揭示了器官衰老的异质性质,多机构老化网络可能有可能促进与年龄相关的发病率风险的个人早期鉴定。此外,针对特定器官的BA的调查也引起了极大的兴趣。le Goallec等。建议根据成像数据对肝脏和胰腺年龄进行预测,以改善腹部年龄9的估计。在另一项研究中,Mauer等人。 使用3D膝盖成像来估计年龄,并将其用于实现准确的多数分类(年龄在18岁以上)10。在另一项研究中,Mauer等人。使用3D膝盖成像来估计年龄,并将其用于实现准确的多数分类(年龄在18岁以上)10。
b'we考虑了与随机噪声(LPN)问题的经典学习奇偶的稀疏变体。我们的主要贡献是一种新的算法框架,它为学习稀疏平等(LSPN)问题和稀疏LPN问题提供了针对低噪声的学习算法。与以前的LSPN和稀疏LPN的方法不同(Grigorescu等人,2011年;英勇,2015年; Karppa等。,2018年; Raghavendra等。,2017年; Guruswami等。,2022),该框架具有一个简单的结构,而无需快速矩阵乘法或张量方法,因此其算法易于实现并在多项式空间中运行。令n为尺寸,k表示稀疏性,\ xce \ xb7是噪声率,使每个标签都会被概率\ xce \ xb7串起。是计算学习理论中的基本问题(Feldman等人。,2009年),学习与噪声的稀疏平等(LSPN)假定隐藏的平等是K -Sparse,而不是潜在的密集载体。虽然简单的枚举算法采用n k = o(n/k)k时间,但以前已知的结果静止图至少需要n k/2 = \ xe2 \ x84 \ xa6(n/k)k/2 k/2对于任何噪声率\ xce \ xb7(Grigorescu等人(Grigorescu等)),2011年;英勇,2015年; Karppa等。,2018年)。我们的框架提供了LSPN算法在时间O(\ XCE \ XB7 \ XC2 \ XC2 \ XB7 N/K)K中,对于任何噪声率\ XCE \ XB7
深神经网络(DNN)中所谓的“注意机制”表示DNN的自动适应,以捕获具有特定分类任务和相关数据的代表性特征。这种注意机制通过加强特征通道和本地强调每个特征图中的特征来在全球范围内发挥作用。渠道和特征重要性是在全球端到端DNS培训过程中学习的。在本文中,我们提出了一项研究,并提出了一种具有不同方法的方法,并在训练图像旁边添加了补充视觉数据。我们使用人类的视觉注意图在任务驱动或自由观看条件下独立于心理视觉实验获得的人类视觉注意图,或者在自由观看条件下或预测视觉注意图的强大模型。我们在图像旁边添加了视觉注意图作为新数据,从而将人类的视觉注意力引入DNNS培训中,并将其与全球和局部自动注意机制进行比较。实验结果表明,DNN中的已知注意力机制几乎与人类的视觉关注在一起,但提出的方法仍然可以更快地收敛和在图像分类任务中更好地表现。
使用机器学习方法对路面大头钉的电磁特性进行分类,grégoryandreoli*,cerema ouest / aan / entum amine ihamine,University Gustave Eiffel / lames / lames rakeeb jauber jaufer jaufer,cerema ouest oeema ouest / aan / aan / aan / aan aan / andum shreedhar savema lan earma aan erema erea a a david guilbert,david david guilbert,david Nguyen,大学古斯塔夫·埃菲尔(Gustave Eiffel当今最常用的是。高分辨率方法能够检测深度,裂纹或明显的脱束,但对于识别地下毫米界面(例如粘性涂层),它们仍然有限且不强大。在本文档中,我们建议将雷达方法与两级SVM监督学习相结合。第一次对古斯塔夫·埃菲尔大学(Gustave Eiffel University)(法国南特)疲劳旋转木马的试验使我们能够验证我们开发的数值方法。介绍21百万,这就是国际能源局(IEA)的数据,应添加多少公里的新道路基础设施,以确保全球运输直到2050年。为了防止交通密度不断增长引起的降解,我们必须能够提前评估基础设施中出现结构性或物质失败的可能性(khweir。和Fordyce,2003年)。为了最大程度地提高其耐用性,法国的路面结构使用接口钉涂层技术。这有助于完整的多层结构充当一个整体块,它可以最大程度地减少机械应变(剪切应力,单调扭曲等),从而最大程度地减少了道路结构的降解(Wang and Zhong,2019;Diakhaté等人。,2008)。多样化的技术有助于评估道路状态:破坏性的技术,通常必须钻出人行道的核心,并且必须在实验室和非破坏性的物理和化学特性中研究物理和化学特性,通常使用电磁波和机械波传播。在大多数情况下,粘性涂层是一种沥青乳液,机械地扩散,这使其连续且规则。仅在破裂阶段(乳液中存在的水的蒸发)才增加了磨损的过程,从而增加了层之间的粘附力。直到今天,我们唯一可以保证沥青乳液的同质应用是工作机器的性能。