如今,数据的空前可用性和计算硬件的进步已推动机器学习 (ML) 和深度学习 (DL) 领域取得重大进展。[1] 通过利用大量开放获取数据,ML 技术可实现自动化决策,适用于医疗预测 [2]、财务预测 [3]、工业故障管理 [1] 等广泛应用。ML 技术在生产中的部署涉及数据收集和计算要求高的算法推理过程。在大多数情况下,此过程发生在昂贵的硬件系统中,例如数据中心。上述许多 ML 应用都需要实时计算,这就需要在数据采集系统和数据中心之间进行不切实际的数据传输。解决这个问题的方法是边缘计算,将采集和计算系统集成在同一设备中,从而消除了通信开销 [4]。这催生了智能工业的一个新领域,物联网 (IoT) 应用可从使用 ML 模型中获益 [5]。物联网系统的一个重要方面是功耗 [6];设备必须依靠电池自主执行高计算任务。这反过来又导致对前所未有的低功耗和低面积利用率的需求。因此,在过去的几十年里,出现了一种新趋势,即在物联网和 ML 应用中使用低面积和低功耗硬件加速器,直接连接到智能传感器或系统 [7]。
癫痫是一种因脑部异常电活动而出现的病理状况 [1]。它是影响全球约 6500 万人(占世界人口的 1%)的重要问题之一 [2]。在阿拉伯国家,癫痫的发病率估计为每 100,000 人中有 174 人。在沙特阿拉伯王国,癫痫的患病率为每 1,000 人中有 6.54 人 [3]。然而,三分之一的癫痫患者无法获得医疗服务。他们必须找到生活和管理日常生活的方法。即使癫痫患者可以获得医疗服务,医疗质量也达不到标准 [4]。癫痫患者的诊断和治疗取决于癫痫发作的类型 [4]。脑电图 (EEG) 记录是神经科医生用来分析脑电波功能异常的技术之一。多年来,它被广泛用于诊断脑部疾病,例如
控制门 RY (0 . 49 π ) 所需的辅助量子位,q 5 是用于对数据进行幅度编码的 1 量子位寄存器,q 6 是编码标签的量子位。在 IBM 量子处理器 ibmq 16 melbourne 上运行该算法可提供 1024 次采样来对量子位 q 0 进行采样。获得的 P (1) 估计为 ˆ P = 490 / 1024 ≃ 0 . 48,则分配给 x = (0 . 884 , 0 . 468) 的标签为 y = − 1,正如预期的那样。尽管在此测试中分类正确,但与模拟器 ibm qasm simulator 的结果进行比较表明,所考虑的量子机过于嘈杂,无法通过算法 1 进行良好的分类。模拟器的输出统计数据提供 ˆ P = 273 / 1024 ≃ 0 . 27 。此结果与未分类数据向量 x 接近训练向量之间的中间点的事实一致。使用相同的训练点和新的未标记实例 x = (0 . 951 , 0 . 309)(其正确分类为 y = 1)重复实验,量子机失败。事实上 ibmq 16 melbourne 返回相对频率 ˆ P = 338 / 1024 ≃ 0 . 38 ,因此它将 x 归类为 y = − 1 。在同一个测试中,模拟器 ibm qasm simulator 返回 ˆ P = 244 / 1024 ≃ 0 . 24 正确分类。观察到的分类准确性不足取决于所考虑的量子处理器的低量子体积 1(QV = 8)。未来工作的内容可能是在更大、更可靠的硬件上进行测试(例如,具有 27 个量子比特和 QV=128 的 IBM 量子机器 ibmq montreal)。所提出的量子分类器的指数加速归因于在对数时间内有效准备量子态以及在恒定时间内执行分类本身(这取决于所需的准确性)。事实上,选择 QRAM 是出于对总体时间复杂度的明确估计,但允许使用其他有效的初始化来运行此量子分类器。
由于科技的飞速发展,人们可以快速轻松地获取信息和新闻。浏览网站、博客和社交媒体可以在几分钟内访问该消息。然而,复杂的信息技术是一把双刃剑。一方面,它帮助人们方便地消费最新的新闻,另一方面,公众消费的许多新闻是尚未知晓的假新闻。新闻中的错误信息给多方造成了伤害。最常见的假新闻包括疫情新闻、股票交易所,尤其是最近俄罗斯和乌克兰之间战争的新闻。在短时间内,大量假新闻流传,可能引发对战争的更大影响。一项分析发现,随着时间的推移,假新闻不断增加(Zhou et al.,2019)。因此,检测假新闻
摘要:在信息和通信技术的时代,确保形象安全已成为面对网络威胁,未经授权的访问和篡改的优先事项和关注。传统技术提供了一定程度的安全性,但实际上缺乏处理图像异常的能力,因此提出机器学习技术并改善支持向量机(SVM)分类器的挑战。本研究通过使用加密和特征提取系统来提高分类器,以增强图像中的数据安全性,该系统依赖于较高的混沌权重来图像的特定部分。所提出的方法将图像的尺寸降低到截面,从那里从图像的实际维度降低。在混淆和扩散的两个主要阶段创造复杂的随机性方面,改进的分类器的准确性更高。实验结果证明了分类器在熵= 8方面的有效性,并且是有效的值,直方图均匀性,异常检测和加密复杂性。这些结果在许多领域提供了可靠且可扩展的解决方案,例如医疗保健,经济学和社交媒体信息传播。可以通过将所提出的方法与保护图像数据的其他方法相结合来提供全面的方法。关键字:支持向量机,图像,加密1。引言在我们当前的时间以及互联网和通信技术的发展中,图像是互联网上最重要的交流形式之一。因此,传统加密算法的挑战和建议出现了。图像用于许多设施,例如安全性,社交通信,医疗领域和通信。因此,由于其广泛的蔓延,对未经授权的人使用数据的使用引起了安全问题。图像通常包含敏感数据,并且必须保留,尤其是在当前广泛的网络攻击中[1]。尽管具有有效性,但网络攻击的加速已成为每个人的痴迷,并且需要挑战,以找到与快速技术发展保持同步的新的和先进的方法。近年来,随着技术和通信的发展以及社交网站和云存储的传播,在网络攻击和数据安全的框架内,暴露于攻击已成为所有军事,财务,经济和其他专业的优先事项[2]。图像是攻击最脆弱的数据,因为它们具有高容量,强大的互连和像素之间的重复。全世界当前正在寻求的目标是数据安全性,最有效的方法之一是加密,这只能使数据不可读取,只能由能够检索它的授权人员。由于先前的研究中提到了许多加密方法,因此加密成为挑战的主题。
由于科技的飞速发展,人们可以快速轻松地获取信息和新闻。浏览网站、博客和社交媒体可以在几分钟内访问该消息。然而,复杂的信息技术是一把双刃剑。一方面,它帮助人们方便地消费最新的新闻,另一方面,公众消费的许多新闻是尚未知晓的假新闻。新闻中的错误信息给多方造成了伤害。最常见的假新闻包括疫情新闻、股票交易所,尤其是最近俄罗斯和乌克兰之间战争的新闻。在短时间内,大量假新闻流传,可能引发对战争的更大影响。一项分析发现,随着时间的推移,假新闻不断增加(Zhou et al.,2019)。因此,检测假新闻
对于鉴定生物化学过程和活细胞中生物学规范至关重要的主要营养素是蛋白质。蛋白质通常围绕由其家庭类型定义的一个或几个功能。因此,需要识别和分类来根据其结构和家庭分离蛋白质。在这项工作中,我们建立了一个模型来对蛋白质序列的家庭进行分类。我们使用的蛋白质序列数据集由各种生物学意义的大分子组成。分类器是使用BI-LSTM深入学习的。我们通过从结构生物信息学研究合作社的蛋白质数据库中收集数据集,使用令牌化对数据进行预处理,并基于BI-LSTM的深度学习网络对分类器进行建模。由于我们获得了受过训练的模型的最佳准确率,因此我们使用学习曲线,准确率和损失的评估指标来找出模型性能。结果表明,Deep Bi-LSTM具有拟合学习曲线,99%的精度率和0.042损失的出色性能。
摘要:当前的图像生成模型已经实现了非常现实的图像质量,提供了许多学术和工业应用。但是,为了确保这些模型用于良性目的,必须开发最终检测图像是否已合成生成的工具。因此,已经开发了几个在计算机视觉应用中表现出色的检测器。但是,这些检测器不能直接应用,因为它们是多光谱卫星图像,因此需要对新模型进行训练。虽然两类分类器通常达到高检测精度,但它们努力将图像域和与训练过程中遇到的形象不同的生成体系结构推广。在本文中,我们提出了一个基于量化量化的变异自动编码器2(VQ-VAE 2)功能的单级分类器,以克服两类分类器的局限性。我们首先要突出二进制分类器所面临的概括问题。通过在多个多光谱数据集中训练和测试有效网络架构来证明这一点。然后,我们说明,基于VQ-VAE 2的分类器,该分类器仅在原始图像上进行了培训,可以检测来自不同领域的图像,并由训练过程中未遇到的体系结构生成。最后,我们在同一生成的数据集上的两个分类器之间进行了面对面的比较,强调了基于VQ-VAE 2的检测器的出色概括能力,在使用vQ-ve-vae 2的探测器时,我们在使用蓝色和红色通道的0.05误报率为1时以1.05的误报率进行了检测。
文章历史记录:收到:2021年1月10日;修订:2021年2月12日;接受:2021年3月27日;在线发布:2021年4月28日摘要:情感是我们日常生活中必不可少的组成部分。尽管如此,脑部计算机界面(BCI)系统尚未达到解释情绪的必要水平。基于BCI框架的经编程的感觉确认是最后几十年来非凡询问的点。脑电图(EEG)信号是这些框架的重要资产之一。EEEG可能是通过头皮在脑波框架内从脑工作中记录的生理标志。利用脑电图信号的最大优势是它反映了真实的感觉,并且可以通过计算机框架有效地准备。一个虚拟数据集可以使用并填充脑电图数据,以计算和分类从脑电图信号生成的这些信号。此处使用的数据集是种子,可以通过称为K-Nearest(KNN)算法的机器学习技术来习惯它来系统化数据。实验性能通过种子分类期间的94.06%的分类值实现。这种提出的方法表明,通过脑电图信号,情绪识别如积极,中立和负面是可能的。
可以帮助创建系统来学习和执行多种操作 (Ahmed 等人,2021)。通常,机器学习用于各种预测或检测欺诈。机器学习算法用于变化,必须使用数据集进行训练。训练结果的模型可用于对假新闻进行分类或检测。为了检测假新闻,一些研究人员创建了算法或系统,根据新闻文章、博客和社交媒体中包含的内容、文本和语言风格来检测假新闻。根据作者或作者使用语言的方式识别和分类假新闻。 (Torabi Asr & Taboada, 2019) 发现假新闻经常使用与丑闻、死亡和恐怖有关的词语。此外,误导性新闻中的许多语言风格都是故意夸大或过于戏剧化的,第二人称代词的使用与假新闻直接相关 (Hancock 等人,2007;Rashkin 等人,2017)。利用AI技术克服虚假新闻的频繁和快速出现。