回答传统英语教学能力评估算法中大数据信息不准确的分类问题,本文提出了基于大数据模糊K-Means Clustering的英语教学能力估计算法。首先,本文建立了约束参数索引分析模型。其次,定量递归分析用于评估大数据信息模型的功能,并实现功能约束特征信息的熵特征提取。最后,通过整合大数据信息融合和K-Means聚类算法,该文章可以实现用于英语教学能力的指标参数的聚类和集成,准备相应的教学资源分配计划,并评估英语教学能力。实验结果表明,使用此方法评估英语教学能力具有良好的信息融合分析能力,并提高了教学能力评估的准确性和教学资源应用的效率。
为了提高单个DNA测序结果的性能,研究人员经常使用同一个人和各种统计聚类模型的重复来重建高性能呼叫仪。在这里,考虑了基因组Na12878的三个技术重复,并比较了五个模型类型(共识,潜在类,高斯混合物,kamila - 适应性的K-均值和随机森林),涉及四个性能指标:敏感性,精度,精度,准确性和F1评分。与不使用组合模型相比,i)共识模型提高了精度0.1%; ii)潜在类模型带来了1%的精度改善(97% - 98%),而不会损害灵敏度(= 98.9%); iii)高斯混合模型和随机森林提供了更高精确度(> 99%)但敏感性较低的呼叫; iv)卡米拉提高了精度(> 99%),并保持高灵敏度(98.8%);它显示出最好的总体表现。根据精确和F1得分指标,比较了组合多个呼叫的非监督聚类模型能够改善测序性能与先前使用的监督模型。在比较模型中,高斯混合模型和卡米拉提供了不可忽略的精度和F1得分的改进。因此,可能建议将这些模型用于呼叫集重建(来自生物或技术重复),以进行诊断或精确医学目的。
MV流量减速时间ERO通过PISA方法通过PISA方法通过PISA方法流量E'PISA E'S'速度E/E'速度比MR速度速率流量为体积量通过体积方法MV Annulus calification MV Annulus calification La calification La calification la量LA体积la量基底RV直径在4-Chamber View Tapse Tapse Tapse TapseMV流量减速时间ERO通过PISA方法通过PISA方法通过PISA方法流量E'PISA E'S'速度E/E'速度比MR速度速率流量为体积量通过体积方法MV Annulus calification MV Annulus calification La calification La calification la量LA体积la量基底RV直径在4-Chamber View Tapse Tapse Tapse TapseMV流量减速时间ERO通过PISA方法通过PISA方法通过PISA方法流量E'PISA E'S'速度E/E'速度比MR速度速率流量为体积量通过体积方法MV Annulus calification MV Annulus calification La calification La calification la量LA体积la量基底RV直径在4-Chamber View Tapse Tapse Tapse TapseMV流量减速时间ERO通过PISA方法通过PISA方法通过PISA方法流量E'PISA E'S'速度E/E'速度比MR速度速率流量为体积量通过体积方法MV Annulus calification MV Annulus calification La calification La calification la量LA体积la量基底RV直径在4-Chamber View Tapse Tapse Tapse TapseMV流量减速时间ERO通过PISA方法通过PISA方法通过PISA方法流量E'PISA E'S'速度E/E'速度比MR速度速率流量为体积量通过体积方法MV Annulus calification MV Annulus calification La calification La calification la量LA体积la量基底RV直径在4-Chamber View Tapse Tapse Tapse Tapse
在微生物群落测序中,涉及细菌核糖体16S rDNA或真菌ITS,靶向基因是分类学分配的基础。传统的生物信息程序已有数十年的历史使用了一个聚类协议,该协议通过该协议将序列汇总到共享百分比身份的包装中,通常为97%,以产生运营技术单位(OTU)。数据处理方法中的进展导致了最小化技术测序符错误的可能性,这是OTU选择的主要原因,而是分析确切的Amplicon序列变体(ASV),这是一种选择,这会产生较少的聚集读数。我们已经在相同16S的元编码细菌扩增子数据集上测试了这两个程序,这些数据集包含来自17个相邻栖息地的一系列样品,这些样品跨越了700米长的不同生态条件的700米长的样本,这些样本在从农田,通过山地,森林,森林过渡到同一海岸的梯度,从农田跨度跨越了梯度。这种设计允许扫描高生物多样性盆地,并测量该地区的α,β和伽玛多样性,以验证生物信息学对十个不同生态索引和其他参数的值的效果。将两个级别的进行性OTU聚类(99%和97%)与ASV数据进行了比较。结果表明,OTU群集成比例地导致了物种多样性的生态指标值的明显低估,以及有关直接使用ASV数据的主导性和均匀性指数的扭曲行为。多元定序分析在树拓扑和连贯性方面也引起了敏感。总体而言,数据支持这样的观点:基于参考的OTU聚类带来了几种误导性的劣势,包括缺少新颖的分类单元的风险,这些偏见尚未在数据库中引用。由于其替代品作为从头聚类的替代方案,另一方面,由于计算需求较重和结果可比性,尤其是对于包含几种但未表征的物种的环境研究,至少对于原核生物而言,与OTU Clus-Clus-Clus-tering titer titer catiftitions catiftitions cotoff cotoff cotoff cotoff conforp的含义,至少是基于ASV的直接分析。
玉米是一种在广阔地区,尤其是撒哈拉以南非洲,亚洲和拉丁美洲的全球种植的关键农作物,截至2021年,占地1.7亿公顷。已经设计了各种统计和机器学习模型,包括混合效应模型,随机系数模型,随机森林和深度学习体系结构,以预测玉米的产量。这些模型考虑了诸如基因型,环境,基因型 - 环境相互作用和现场管理等因素。但是,现有模型通常没有完全利用这些因素之间的因果关系的复杂网络以及农艺数据固有的层次结构。这项研究引入了一种创新的方法,将随机效应整合到贝叶斯网络(BNS)中,利用其通过定向无环形图对因果关系和概率关系进行建模的能力。植根于线性混合效应模型框架并为分层数据量身定制,这种新颖的方法表明了增强的BN学习。应用于现实世界的农艺试验,可产生一个改善解释性的模型,并揭示了新的因果关系。值得注意的是,提出的方法将玉米收益率预测的错误率从28%降低到17%。这些结果倡导BN在为层次农艺数据构建实际决策支持工具中的偏好,从而促进因果推断。
精确医学的愿景之一是基于分子特征而不是基于表型证据来重新定义疾病分类法。但是,实现这一目标是高度挑战的,特别是在神经病学方面。我们的贡献是基于15种构成27种蛋白质的15个分子机制的基因负担(例如apoE)在两种疾病中都有描述。我们证明,使用稀疏自动编码器和稀疏的非负基质分解的联合AD/PD聚类是可重现的,并且可以与临床,病理生理和分子水平上的AD和PD患者亚组的显着差异有关。因此,簇是与疾病相关的。据我们所知,这项工作是神经退行性疾病领域基于机制的分层的首次演示。总的来说,我们将这项工作视为迈向基于分子机制的神经疾病分类法的重要一步,这可以通过超越基于经典表型的疾病定义来帮助未来开发出更好的靶向疗法。
摘要 - 采用信息技术进行教学和学习活动引起了教师之间的技能。在过去的几年中,中国教师的技术训练研究仅限于诸如诸如技术超负荷,技术复杂性,技术 - 系统性,技术 - 不确定性和技术入侵之类的因素,并忽略了新技术采用的新兴因素。此外,所有技术训练研究都没有根据技术训练因素来识别教师群体的进一步审议。这项研究涵盖了中国湖南教师的技术应力因素识别范围和教师集群的产生范围。通过问卷调查来收集有关五个技术因素的教师协议,并使用统计方法来衡量回答。调查结果表明,所有调查的因素与中国教师Hunan的Technostress都有积极和显着的关系。使用K-均值聚类方法将教师聚类为五个不同的群集。这项研究发现了新技术是一种新技术,并成功地将教师聚集在重要的集群中,以使中国的教育部门能够为教师提供有针对性的技术培训。
这项研究利用机器学习(ML)来改善伊朗石化行业两级可持续供应链中决策单位(DMU)的评估。在90个时间段内进行了28个单位的效率计算。根据可持续性标准选择了供应链的输入和输出,通过使用机器学习和网络数据信封分析(NDEA)的混合方法来促进生产计划和单位开发的准确估计。目标是将ML聚类方法与网络NDEA模型一起使用,以确定用于对均质单元进行分类的最有效的聚类算法。我们研究的主要目标是利用机器学习技术来提高决策过程的准确性,特别是在类似单元的聚类中以评估效率。主要目标是通过将它们与每个集群中最有效的单元进行比较来创建提高低效单元的性能的策略。通过实施深层嵌入式聚类算法,我们发现了效率评估和开发计划的实质性改善。聚类结果与传统NDEA模型之间的对比突出了聚类在评估有效边界和启用集中发展策略的近端方面的重要性。这项研究强调了使用ML进行聚类的重要性,以提高工业设施可持续发展的效率评估和战略计划。结果表明,与使用DEA的非聚类方法相比,使用聚类来评估单位的相对效率,可以平均降低与群集效率边界效率低下的单位距离的18%,这代表了效率低效率单位的更可实现的理想目标。
时间序列聚类分析的标准实践方法涉及仔细的特征工程,通常利用专家输入来手动调整和选择特征。在许多情况下,专家输入可能不容易获得,或者社区可能尚未就给定应用程序的理想特征达成共识。本文比较了几种聚类分析方法的结果,这些方法使用手动选择的特征和自动提取的特征,应用于来自商业卡车车队的大型地理空间时间序列远程信息处理数据。探讨了特征选择、降维和聚类算法选择对聚类结果质量的影响。该分析的结果证实了先前的结果,即在聚类质量指标方面,领域无关特征与手工设计的特征具有竞争力。这些结果还为识别大型非结构化车辆远程信息处理数据中的结构的最成功策略提供了新的见解,并表明在手动选择的特征不可用的情况下,使用自动特征提取进行时间序列聚类可以成为从大规模地理空间时间序列数据中提取结构的有效方法。
在初始免疫挑战时,树突状细胞(DC)迁移到淋巴结,并通过C型凝集素样受体2(CLEC-2)与成纤维细胞网状细胞(FRC)相互作用。CLEC-2与FRC上的膜糖蛋白podoplanin(PDPN)结合,通过FRC网络抑制肌动蛋白的收缩性,并允许淋巴结扩展。已知透明质酸受体CD44是FRC对DC做出反应所必需的,但作用机理并未完全阐明。在这里,我们使用定量的单分子超分辨率技术DNA-PAINT可视化和量化FRC质膜中PDPN聚类的调节方式。我们的结果表明CLEC-2相互作用导致形成大型PDPN簇(即以CD44依赖性方式每个群集超过12个蛋白质。这些结果表明,CD44表达需要在CLEC-2相互作用后在FRCS膜上稳定大的PDPN,这揭示了CD44通过该分子机制促进FRC和DC之间的细胞串扰。