从2003年起,中国金属需求的非常快速的增长导致了一种矿业公司不断追逐行动目标的情况。这种情况因中国建筑需求的强度和中国制造业的高金属强度而加剧了这种情况,至少在最初,这种情况很少关注金属储蓄技术。在15年中,铜和其他基准金属的价格在2008年的金融危机之后的2009年中保持异常高(2009年的中断),直到产量陷入困境,而中国人的增长放缓。图1图表在1960 - 2024年期间铜(实线)和铁矿石(断线)价格。
3.1.2.1。Rugury ................................................................................................................................................................................................................ 40 3.1.2.2。机械性能对保留的影响....................................................................................................................................................................................................................................................................................................................... 40 3.1.2.3。Resistance of chewing materials ............................................. 41 3.1.2.4.Structural modifications Improving the properties of new materials .......................................................................................................... 43 3.1.2.5.BioHPP compared to CO-CR ..................................................................... 44 3.2.aesthetic and felt patients .............................................................. 45 3.3.costs ......................................................................................................... 46 3.4.Repair ............................................................................................................. 49 Conclusion ........................................................................................................................................................................................................................................................................................................ 54 Annex 1: .............................................................................................................................. A BIBLIOGRAPH: .........................................................................................................................i
这项研究研究了通过定向能量沉积(DED)处理的基于Co-Ni-al-W-TA-TI-CRγ/γ'基于钴的凝固路径中出现的隔离和降水。观察结果揭示了添加剂制造过程中液体中划分的特征元素。由于这种微层次,发生复杂的多相沉淀,并且在由DED制造的基于钴的超合金中鉴定并表征了各种沉淀物。扫描电子显微镜(SEM)和透射电子显微镜(TEM)用于研究在实用的显微组织中检测到的各个阶段的空间分布和性质。能量色散X射线光谱法(EDS),波长色散X射线光谱法(WDS)和电子能量损耗光谱(EEL)与衍射模式的精细分析相结合,以识别装饰互构成区域的不同阶段。这些特征允许鉴定不同的亚微音沉淀:Al 2 O 3,(Ta,ti)(n,c),HFO 2,Cr 3 B 2和(Ti,Ti,Zr,Hf)2 Sc。根据实验结果讨论凝固序列。这项工作提供了对固化隔离和在DED处理的基于钴的超合金中的第二相降水之间相互作用的首次了解。关键字γ/γ'Superaly合金;增材制造;第二相降水; tem
摘要纳米技术已经改变了工业腐蚀的限制,提供了增强治疗结果的机会,同时最大程度地减少了不良影响。这项研究的重点是氨基和墨托型耦合剂的组合,以制造含硫的聚合物聚合物涂层的钴铁液纳米纳米粒子,以作为抗腐蚀的潜在应用。在这项研究工作中,两种类型的聚合物有限岩纳米复合材料由组成的单体组成,该单体由一个组成的单体组成,其中无机纳米颗粒核通过包含上述单体共聚物在分子的一端组成的共聚物的层覆盖。两个系统(包括基于卵磷脂表面活性剂的微乳液系统和游离卵磷脂乳液系统)分别用于合成纳米复合材料,并分别将其标记为PF-A和PF-B。用X射线衍射(XRD)和动态光散射(DLS)分析表征准备好的样品。制备的PF-A纳米复合材料提供了一种形成的膜,在金属表面上具有出色的抗腐烂特性而无需产生污泥,而不使用磷或铬在1.0 m HCl溶液中与PF-B相比,在1.0 m HCl溶液中,最大最大腐蚀抑制效率为1.5 wt。基于纳米量的1.5 wt。基于纳米体重的量度(MG/CMG/cmg/cmg/cmg)。研究了操作参数,例如温度和抑制剂浓度。用原子力显微镜(AFM)证实了在钢表面形成的膜表面形成的膜,所获得的结果揭示了彼此紧凑和对齐的球状纳米球,形成了针对腐蚀性环境的抗腐蚀屏蔽单层。AFM图像验证了钢板表面上的膜形成,并且由于胺和默西托托类型的耦合剂的独特组合具有协同作用,因此两种样品的抗腐蚀抑制作用的实验发现与对照样品相比。
这是根据Creative Commons归因许可条款(https://creativecommons.org/licenses/4.0)的开放访问工作。请注意,重复使用,重新分配和复制尤其要求作者和来源被记住,并且单个图形可能需要特别法律规定。该许可受Beilstein档案术语和条件的约束:https://www.beilstein-archives.org/xiv/terms。这项工作的确定版本可以在https://doi.org/10.3762/bxiv.2025.6.v1
furazolidone(FZD)是一种合成硝化尿液抗菌药物,在兽医医学中广泛使用,以预防和治疗牲畜和水产养殖中的细菌感染,目的是提高饲料转化率和促进动物的生长。1,2尽管如此,由于担心其在包括癌症和遗传突变在内的人类中引起不良健康影响的潜力,FZD在众多国家中的应用已被禁止在众多国家中。3抗菌剂的过度使用不仅会导致动物组织和器官的积累,并在日常生活中融入食物链中,而且还会在多种基质中呈现环境风险,包括土壤,水和沉积物。4,即
金属污染物具有持久性,可能有毒,并在自然环境中积累。它们对生物体的毒性取决于暴露时间和剂量 [Pande et al., 2022]。它们通过限制土壤微生物的数量和活性来影响土壤微生物 [Abbas et al., 2021]。锰、铁和钴对微生物至关重要 [Farrag, 2017; Zeinert et al., 2018; Uzoh and Babalola, 2020]。同时,如果过量存在,它们也会造成危害 [Łopusiewicz et al., 2020; Zhang, 2022; Wu et al., 2022]。这也与对土壤酶活性的影响有关,土壤微生物是酶活性的来源之一。土壤的酶活性受非生物、生物和人为因素的影响。与施肥和使用植物保护产品有关的人类活动是农业土壤中金属的主要来源,并导致金属含量的增加[Furtak
摘要 :由于相关优势,合成氧化钴纳米粒子 (Co3O4-NPs) 的绿色技术如今比其他方法更受青睐。本研究中的 Co3O4-NPs 是利用菠萝废皮和氯化钴 (Ⅱ) 作为钴源生成的。使用傅里叶变换光谱 (FTIR)、X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、能量色散 X 射线光谱 (EDX)、紫外分光光度计等几种方法对生成的 NPs 进行分析。已确定生成的 Co3O4-NPs 对抗革兰氏阳性菌具有抗菌性能,并通过琼脂孔扩散法发现其对枯草芽孢杆菌 (B.subtilis) 具有活性。这种新创建的绿色合成技术对环境无害,可以取代 Co NPs 的物理和化学过程。
c物理系,巴凡恩的Vivekananda科学,人文与商业学院,海得拉巴,Telangana,Telangana,500094,印度D,D d diveabhapatnam,Vishakhapatnam,Andhra Pradesh 530045,印度,印度纳米型纳米级液压型载体的使用,自1960年代以来,但是对于表面活性剂浓度,对结构和磁性的关注很少。本文研究了表面活性剂十二烷基硫酸钠(SDS)浓度对钴铁酸盐(COFE 2 O 4)纳米颗粒的影响,该纳米颗粒是在250°C和500°C的退火温度下通过反向胶束制备的。对SDS比率变化的样品(CO:SDS = 1:0.33,1:0.5,1:0.66)进行了XRD,TGA,TEM,FTIR和VSM研究。所有样品表现出单相尖晶石结构,晶体直径范围为10至18 nm。随着SDS浓度的增加,晶体的尺寸减小。TEM图像显示粒径在7.6 -17.7 nm的范围内。VSM调查显示样品的铁磁行为。相同浓度相对于退火温度相对于退火温度,观察到的增加反映了纳米颗粒的单域性质。这强调了退火条件在定制钴铁岩纳米颗粒中的关键作用,作为在纵向磁记录介质中的合适应用。(2024年3月26日收到; 2024年6月7日接受)关键词:钴与SDS比,粒径,反向胶束,十二烷基硫酸钠1.引言铁氧体磁性纳米颗粒一直是其广泛应用的最深入研究和研究的材料之一,包括铁氟烷基技术,磁性冷冻,磁共振成像(MRI),高密度记录,Spintronics,spintronics,抗肿瘤药物,抗肿瘤药物输送,磁性超热和其他[1-4]。钴铁氧体纳米颗粒由于其混合尖晶石结构而引起了很多兴趣,其中包含晶格中A和B位点的二价钴阳离子和三价铁阳离子[5]。钴铁氧体(COFE 2 O 4)具有显着的物理和机械性能,并且具有异常稳定和电绝缘性[6,7]。这些特殊特征使钴铁岩成为广泛医疗应用的可行竞争者[8]。合成铁氧体纳米颗粒的各种方法的目标是匹配其特征,例如粒度和分布,形状,团聚程度和粒子组成程度与特定应用。控制这些质量使您可以在各种应用中提高纳米颗粒的性能,包括磁数据存储,生物成像,催化和环境清理。sol-gel [9],共沉淀[10],微乳液[11]和其他流行的方法,它们具有其优点和局限性。
世界上大部分钴是欧盟的战略原材料,是在刚果民主共和国(DRC)开采的。然后将其运到中国进行处理,例如在电池和电动汽车(EV)中使用。这会产生效率低下,额外的排放,最重要的是至关重要的关键原料和对中国的绿色部门依赖性。DRC想要向上移动电池供应链。2021年彭博社的一项研究表明,建造刚果加工厂来生产锂离子电池前体比在美国,中国或欧洲建造一个要便宜得多。与DRC建立了一个全球网关合作伙伴框架,以帮助开发其关键的原材料链。欧盟合作伙伴能否通过在DRC中建立全球门户钴加工厂来减少中国对中国的关键原材料和绿色过渡依赖?