L 屋顶路缘,平顶或斜顶(拆下运输) L 服务平台(符合 OSHA 标准) L 水平型号的百叶窗式集气室 L 120 伏 GFI 插座和照明 L TEFC 风扇电机,高效和汽车规格选项 L 电机缺相保护 L 电机皮带护罩 L 振动隔离(外部) L 排气循环(大多数型号) L 蒸发冷却包 L 带冷冻水或 DX 线圈的冷却部分 L 带热水、蒸汽或电线圈的加热部分 L 100% OA 型号的空间温度控制 L DDC 微处理器控制 L 温和天气状态 L 燃烧器警报喇叭 L 清除计时器(30 秒) L 三相电源监视器 L 烟雾探测器 L Magnahelic 和 Photohelic 仪表 L FM 或 IRI 气体歧管 L 天然气转丙烷(LP) 转换开关 L 高气压调节器 L 低气压燃烧器组件(无需额外费用)
随着微纳米制造技术的发展,用于大脑皮层内神经调节的神经探针也得到了发展。这些用于皮层内刺激的技术大多依赖于通过电极或电极阵列进行的直接电刺激。利用时变磁场产生电场是一种较新的神经调节技术,已被证明对皮层内刺激更为有效。此外,电流驱动线圈不需要与组织进行导电接触,并能够精确调整磁场,不受生物组织和封装层非磁性的影响。可以根据操作所需的参数优化和定制此类微线圈制造的材料和设计参数空间,以提供理想的性能。在这项工作中,我们回顾了可植入微线圈的关键要求,包括探针结构和材料特性,并讨论了它们在皮层内神经调节应用中的特性和相关挑战。© 2021 作者。除非另有说明,本文的所有内容均根据知识共享署名 (CC BY) 许可证进行授权 (http://creativecommons.org/licenses/by/4.0/)。https://doi.org/10.1063/5.0023486
在过去的二十年中,经颅磁刺激(TMS)已用于研究方案和神经疾病的临床治疗。在这项工作中,我们分析了经颅磁刺激设备的加热,目的是使用新颖的刺激线圈设计来减少它。设备的操作受刺激线圈过热的限制,因此在治疗过程中不断使用设备,并且设备的终生会受到影响。考虑使用同心电感器来划分电流的大小,分析的第一阶段包括研究电激发电路的响应。这是通过多物理分析补充的,磁场之间的耦合和两个不同的线圈几何形状之间的耦合,显示了生成的磁场的空间分布和周围刺激线圈周围空间中的温度上升。这项研究的主要贡献是使用有限元方法设计刺激线圈的设计,从而降低了设备的工作温度,考虑到实用的线圈几何形状。关键字:线圈,电路,有限元法,诱导电场,经颅磁刺激。
GSHP通常被外部热交换系统的类型细分。这包括接地耦合的热泵(GCHP),它们是钻孔或沟槽中的闭环管道系统,地下水热泵(GWHP),它们是带有水井和地表水热泵(SWHP)的开环管系统,它们是封闭式管道管道或开放式式式式旋风或开放式式旋转式或开放式旋风或热量的弹跳弹跳弹跳。
完全独立,专为户外应用而设计,每台冷水机组都配备低噪音双螺杆压缩机,压缩机内配有完全独立的润滑系统。这提供了一个简单且极其可靠的压缩机系统,压缩机电机用吸入气体冷却,并配有故障安全液体喷射系统,以确保在任何条件下电机冷却。每台压缩机都有自己独立的制冷剂回路,并与蒸发器和冷凝器匹配,以实现最佳性能。冷凝器盘管的布置使整个表面的空气充分循环,并通过集成内部挡板避免旁路。冷凝器风扇是多叶片翼型部分,镰刀端部分安装在喇叭口孔中,以提供最大的气流和低噪音特性。冷凝器盘管、压缩机、高效双螺杆压缩机以及防风雨电源和控制中心安装在焊接、全镀锌、刚性底座上。所有金属板均镀锌,外部面板采用 RAL 9002 粉末喷涂并烘烤以防腐蚀。
摘要 近场电感耦合无线电力传输 (WPT) 系统已广泛应用于脑植入应用。然而,由于发射器 (TX) 和接收器 (RX) 线圈之间的不同变化会导致接收功率变化,因此高效可靠的电力传输具有挑战性。本文提出了一种利用负载移位键控的闭环自适应控制系统,该系统采用 0.5 lm 标准 CMOS 工艺设计,用于为植入负载提供所需的功率,以补偿这些差异。所提出的 TX 和 RX 线圈均采用 FR4 基板制造,尺寸分别为 10 9 10 mm 和 5 9 5 mm。通过改变功率放大器的电源电压,该自适应闭环系统调节发射功率,向负载提供 5.83 mW 的功率,这大约是阈值窗口的中点。该系统在空气和组织介质中分别实现了 8 毫米距离下的 9% 和 8% 的电力传输效率。初步结果表明,与开环模块相比,带有反馈回路的微型 WPT 模块在 TX 和 RX 线圈之间的 8 毫米距离下实现了 8% 和 3% 的效率提升。
物体处于强、静态、均匀磁场 (B 0 ) 中,磁场强度为 1.5T、3T、7T、11.7T... RF 磁场 (B 1 ) 激发核自旋。接收线圈检测激发自旋在 B 0 场内进动时发出的信号。磁线性梯度 (G x 、G y 、G z ) 在空间上定位检测到的信号。
1。世界上高磁场的磁铁开发项目2。HFLSM的无冻磁体开发•从Rebco线圈的失败中学到的经验教训3.稳健的Rebco线圈概念•两个捆绑绕组Rebco线圈具有局部损坏•大规模Rebco R&D Coil 4。33T无冰低导的磁铁发育5。摘要
摘要 - 超导离子龙门(SIG)项目旨在设计,构建和测试一个离子龙门的弯曲的超导偶极示威磁体(刚度为6.6 Tm)。主示威者磁铁参数是一个4 t的偶极场,该偶尔线生成的圆环孔,直径为80 mm,曲率半径为1.65 m和30°角扇形。该项目插入了CNAO,CERN,INFN和Medaustron之间的Eurosig合作框架中。在这次合作中,SIG的主要目标是对绕线和组装cos-θ线圈的可行性研究,其曲率半径较小。此外,通过构建直接的热示威磁体共享SIG横截面,CERN的平行程序专门用于研究间接冷却问题。这些程序背后的基本思想是检查社区在超导加速器磁铁设计方面的丰富经验是否会导致龙门磁铁域的突破。本文介绍了SIG磁铁概念设计的主要要素,并报告了米兰的Lasa实验室进行的第一次绕组试验,并带有铜虚拟电缆。此外,还讨论了高度弯曲的cosθ线圈的绕,固化和浸渍的可能解决方案。
应用超导性的创新研究基础设施(IRIS)是一项由意大利大学和研究部长资助的项目,领导层分配给INFN和LASA实验室作为其协调员。该项目目前处于最后阶段,涉及加速器(ESMA)的能源节能,完全高温超导偶极磁铁的设计和构建。该磁铁是由ASG超导体S.P.A.设计的,在INFN LASA团队的支持下。制造将在ASG超导体S.P.A. Genova中进行。此贡献涵盖了偶极子的最终设计及其构建技术,涵盖了电磁,机械和热方面。磁性明智的,使用金属与绝缘绕组技术缠绕12个赛道线圈。整体线圈堆栈(6+6)的长度将近1米,并具有70毫米宽的免费孔,最大中央磁场为10吨。为了缠绕线圈,已经设计和购买了专用的绕组机。可以承受这样的场,即由高强度合金制成的机械结构正在产生。ESMA将是一种传导冷却的无低温磁铁,并将在20 K下运行,从而大大降低了与低温药物相关的成本。