皮肤的稳定微生物定殖取决于宿主免疫系统的严格控制。脂质依赖性的酵母菌通常将皮肤定位为无害的剂量,并且受到宿主17型免疫监视,但这种真菌也与人类和动物的多样化皮肤病理有关。使用Malassezia暴露的鼠模型,我们表明Vγ4 +皮肤γδT细胞迅速扩展,是IL-17A介导真菌控制的主要来源。即使在真菌清除率后,也会在皮肤中持续存在的记忆样的玛拉西氏症响应性Vγ4 + T细胞富含排水淋巴结,并在几周后的真菌重新暴露后被保护。诱导γδT17免疫取决于IL-23和IL-1家族细胞因子信号传导,而TOLL样和C型凝集素受体则是可分配的。此外,暴露于Malassezia的宿主的Vγ4 + T细胞能够直接和选择性地对Malassezia衍生的配体进行反应,而与抗原呈递的宿主细胞无关。被检测到的真菌含量是在Malassezia属的各种物种上共享的,但在其他基本菌或aycomycota中没有使用。这些数据提供了对17型免疫监视的诱导和维护,对皮肤的诱导和维护,对皮肤健康具有重要意义。
皮肤微生物组的真菌群落由单一属Malassezia主导。除了其在宿主界面的共生生活方式外,这种共同的酵母还与人类和宠物动物的各种炎症性皮肤疾病有关。稳定的定殖通过17型抗真菌型免疫维持。然而,驱动TH17对Malassezia的反应的机制仍不清楚。在这里,我们表明C型凝集素受体Mincle,Dectin-1和Dectin-2识别Malassezia细胞壁中的保守模式,并在体外诱导树突状细胞活化,而在体外,TH17激活只需要Dectin-2,而在体内实验性皮肤化合物期间,TH17激活。相反,在这种情况下,类似Toll样受体识别是多余的。相反,通过MyD88的燃料IL-1家族细胞因子信号传导也与T细胞固有方式有关Th17激活。综上所述,我们表征了有助于保护皮肤最丰富成员的途径。这种知识有助于理解屏障免疫及其对Censals的调节,并且考虑到异常免疫反应与严重的皮肤病理相关。
。CC-BY 4.0国际许可证。根据作者/资助人提供了预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2025年2月25日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2024.11.28.625817 doi:Biorxiv Preprint
此预印本的版权所有者此版本于 2025 年 2 月 6 日发布。;https://doi.org/10.1101/2025.02.05.636741 doi: bioRxiv preprint
共生微生物遍布人体大多数器官和组织,是维持健康和疾病进展的重要调节器。肺腺癌与慢性炎症无可争议地有关。然而,引发这种炎症的诱因以及所涉及的特定免疫介质仍然是个谜,值得广泛探索。这项研究揭示了肺癌组织和正常组织之间的共生菌存在显著差异。这对于临床患者和小鼠都是如此,肿瘤组织中细菌的多样性和丰度都显著超过正常组织。已经证明肺共生菌的紊乱可以刺激肿瘤细胞的增殖。从机制上讲,我们认为肺细菌可能促进 NK 细胞免疫抑制分子 TIGIT 的表达以及 IL-2 和 IFN-γ 的分泌。这进而引发免疫抑制微环境的改变,从而促进肿瘤增殖。
抽象的多药微生物已成为全球主要的公共卫生问题。肠道微生物组是用于保护人体免受病原体的生物活性化合物的金矿。我们使用了一种多摩学方法,该方法通过代谢组分析整合了74个共生肠道微生物组分离株的全基因组测序(WGS),以发现它们与沙门氏菌和其他抗生素耐药病原体的代谢相互作用。我们根据WGS注释曲线评估了这些选定分离株的功能潜力差异。此外,确定了选定的共生肠道微生物组分离株的共培养上清液中最大的代谢产物,包括一系列二肽,并检查了其防止各种抗生素抗性细菌生长的能力。我们的结果提供了令人信服的证据,表明肠道微生物组会产生代谢产物,包括可能应用于抗感染药物的二肽的化合物类别,尤其是针对抗生素耐药的病原体。我们既定的肠道微生物组生物活性代谢产物的发现和验证的管道是作为多种耐药感染的新候选者,这是发现抗菌铅结构的新途径。
植物的根在与微生物社区相关的群体中生长,称为根际微生物组。免疫Acɵvaɵ响应于诸如艾氏蛋白酶衍生的表位(G22)之类的引发剂限制了植物根部的细菌,但也抑制了植物的生长。一些共同的根部相关细菌能够抑制植物对引起剂的免疫反应。在这项研究中,我们提高了165种根相关细菌抑制含量G22诱导的免疫Acɵvaɵ和生长式restricɵon的能力。我们证明,来自Dyella Japonica菌株MF79的II型分泌的亚lase,我们称其为免疫抑制亚抑制作用A(ISSA)A(ISSA),使免疫Eliciɵngpepɵdepepɵdetof g22裂解并有助于免疫抑制。在其他与植物相关的共同体中发现了ISSA同源物,在xanthomonadales的顺序中具有高度高的保守。这代表了一种新型机制,通过该机制,共生微生物在根际微生物组中调节了抗G22诱导的免疫力。
摘要在Metazoa中研究肠道菌群的一系列数据的出现已经显着扩展了我们对Consens在控制较高生物体在规范和病理学中的广泛生理功能中的作用中的作用的理解。在肠道中,微生物负荷显着超过了其他生态系统的微生物数量,肠道微生物群的成分是诱导宿主免疫系统激活的刺激的恒定来源。在内的创新高分辨率方法的生物医学研究引入了引入,包括多态技术,它带来了改变我们对肠道分子的理解的数据,包括具有GRAS状态的益生菌,广泛用于医学,农业和生物技术。这些细菌在宿主体内诱导对细菌增殖和膨胀有益的宿主体内过程的能力表明,我们对其生命的逻辑及其与真核细胞相互作用的机制显然缺乏知识。这决定了对益生菌进行全面研究的迫切需求以及其安全评估的标准化。apriori对广泛用于医学,农业和生物技术广泛使用的细菌的特殊益处的信心已确定当今我们的控制系统的严重遗漏 - 缺乏标准化研究以确保对具有GRAS状态的细菌的安全评估。关键字:肠道,益生菌,创新技术,益生菌 - 宿主串扰,生物安全当很明显应该迅速填补这一差距时,就已经到来了,并且只有精确理解与真核细胞相互作用的分子基础,可以为有效的实际发展提供基础,以控制细菌毒力和益生菌的进化和益生菌安全策略的演变,以及避免了遗传技术的范围,从而避免了遗传技术,从而避免了遗传技术,从而避免了遗传学的进化,从而避免了对环境和管理的过程,从而避免了该过程,从而避免了该过程,从而避免了该过程,从而避免了造成的进化,从而避免了造成的进化,从而避免了遗传技术的过程,从而避免了依次的过程。微观和宏观世界。
从历史上看,微生物相关疾病的研究主要集中在病原体上,在科赫的假设的指导下。这种以病原体为中心的观点为疾病病因和微生物发病机理提供了机械理解。然而,下一代测序方法揭示了各种微生物在疾病中所扮演的角色的看法要细微得多,这突出了除个体病原体以外的微生物多样性的重要性。这种更广泛的观点承认宿主和微生物群落在疾病发展和抵抗中的作用。尤其是,营养不良的概念,尤其是在口腔内,引起了人们的注意,以解释复杂多数疾病的出现。这些疾病通常源自居民微生物而不是外来病原体,使他们的治疗变得复杂,甚至蒙上了我们对疾病病因的理解。口腔健康是通过共生微生物和宿主之间微妙的平衡来维持的,诸如龋齿和牙周疾病之类的疾病是由这种平衡的致病性扰动引起的。共生微生物,例如某些链球菌和corynebacterium spp。,通过涉及过氧化氢和膜囊泡分泌的机制来维持口腔健康,从而扮演着至关重要的作用,这些机制可以抑制致病物质并调节宿主免疫反应。最近的研究重点是分子共度主义的机制,扩大了我们对共生微生物组的这些关键功能的理解,证明了它们在促进口腔健康和预防疾病方面的核心作用。这些能力代表了针对预防疾病和管理的潜在创新策略的很大程度上未开发的储层,强调需要加强固有地抑制发病机理的共生微生物组。
G类(IgG)的母体免疫球蛋白保护后代免受肠道感染的侵害,但是何时,何时何地以及这些抗体是生理产生的,并赋予保护仍然神秘。我们发现,成年小鼠中的循环IgG优先结合 - 生命肠道的共生细菌,而不是自己的成年肠道细菌。igG-分泌针对早期生命的肠道细菌的分泌浆细胞出现在断奶后的肠道中,在那里保持成年。操纵暴露于肠道细菌或浆细胞发育之前,但并非此后,断奶会减少IgG-分泌靶向早期生命肠道细菌的浆细胞。此外,这种抗肠道分子IgG反应的发展与早期生命区间一致,其中结肠中存在杯状细胞相关抗原通道(GAP)。在早期生命中被B细胞消融或细菌暴露减少的大坝的后代更容易受到肠道病原体挑战的影响。与当前的概念相反,保护性母体IgG针对后代中的肠道分子而不是肠病原体。这些早期的生活事件影响了反 - 共生IgG生产,具有保护后代的世代相传效应。