1简介1 1.1 EHR的比较优势。。。。。。。。。。。。。。。。。。。。。。3 1.1.1电子健康记录收益。。。。。。。。。。。。。。。。。。4 1.2 EHR增强技术的协同整合。。。。。。。5 1.2.1 EHR缺点。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 1.3 EHR中的机密性,完整性和可用性(CIA)。。。。。。。。。。7机密性。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>7完整性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>8可用性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>9。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>9 1.3.1网络攻击者对医疗保健系统的流行和影响。 div>。 div>91。1.3.2全球医疗保健数据政策的比较分析。 div>。 div>。 div>。 div>。 div>10 HIPAA。 div> 。 div> 。 div> 。 div> 。 div>10 HIPAA。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>10 GDPR。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 10比较挑战。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 10。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 11 1.3.3 EHR的学术前景。 div> 。 div> 。 div> 。 div> 。 div> 。 div>10 GDPR。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>10比较挑战。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>10。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11 1.3.3 EHR的学术前景。 div> 。 div> 。 div> 。 div> 。 div> 。 div>11 1.3.3 EHR的学术前景。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。11 1.4 EHR隐私保护。。。。。。。。。。。。。。。。。。。。。。。。。12 1.5集中式与分散的EHR系统。。。。。。。。。。。。。。。。。。13 1.5.1选择集中式EHR系统的理由。。。。。。。。。14 1.5.2集中式EHR系统的理由。。。。。。。。。。。。。。16增强的互操作性。。。。。。。。。。。。。。。。。。。16提高了数据完整性和质量。。。。。。。。。。。。。16
摘要:柔顺机构广泛应用于精密工程、微纳操作、微电子等前沿科技领域,对多自由度柔顺机构的需求急剧增加。随着自由度的增加,柔顺机构的结构变得越来越复杂。本文提出了一种基于曲梁单元的六自由度柔顺机构。该柔顺机构具有结构简单、自由度多的优点。利用等几何分析法,建立了该机构的模型。静态分析表明可生成六个自由度。通过3D打印开发了该机构的样机。进行了六自由度加载试验。输出与输入具有高度的线性关系,结构间耦合性较低。我们相信这项研究为基于曲梁单元的柔顺机构设计迈出了开创性的一步。
最近开发了将薄膜材料的二维(2D)模式转换为3D介质结构的方法,在微系统设计中创造了许多有趣的机会。增长的感兴趣领域是多功能的热,电气,化学和光学接口到生物组织,尤其是3D多细胞,毫米尺度的构建体,例如球体,组装和类动物。本文提供了3D机械界面的示例,其中parylene-c的细丝带构成了透明,高度合规的框架的基础,这些框架可以可逆地打开和封闭,以捕获,包裹和机械限制脆弱的3D组织,以柔和的,非毁灭性的方式,以确切的粘膜属性测量,用于使用粘ellasticalsiques in nanoindent in nanoindentiques in nanoindentiques in nanoindentiques。有限元分析是一种设计工具,可用于指导对形状匹配的3D体系结构的几何和材料参数的选择。这些计算方法还量化了在打开和关闭其赋予的结构和力的过程中变形的各个方面,它们赋予了它们的结构和力。纳米识别的研究表明,根据器官的年龄,有效的Young的模量在1.5至2.5 kPa范围内。这一结果收集表明,在毫米级,软生物组织的非侵入性机械测量中广泛的效用。
本次演讲将重点介绍 UNC Health 人工智能 (AI) 的发展历程,从起步阶段到负责任地实施工具,这些工具可提高提供商在提供以患者为中心的优质护理、响应患者需求以及继续确保患者护理文档完整方面的满意度。本次演讲还将提供在动态医疗环境中实施和监控 AI 工具使用方面的合规性和隐私考虑因素。
构建值得信赖的自主系统具有挑战性,原因有很多,不仅仅是试图设计出“始终做正确的事情”的代理。在人工智能和 HRI 中,还有一个更广泛的背景往往没有被考虑:信任问题本质上是社会技术问题,最终涉及到一系列复杂的人为因素和多维关系,这些因素可能出现在代理、人类、组织甚至政府和法律机构之间,每个机构对信任都有自己的理解和定义。这种复杂性对开发值得信赖的人工智能和 HRI 系统构成了重大障碍——虽然系统开发人员可能希望他们的系统“始终做正确的事情”,但他们通常缺乏确保这一结果的实用工具和法律、法规、政策和道德方面的专业知识。在本文中,我们强调了信任的“模糊”社会技术方面,以及在设计和部署过程中仔细考虑它们的必要性。我们希望通过以下方式为人工智能和 HRI 中的可信工程讨论做出贡献:i)描述在处理可信计算和可用信任模型的需求时必须考虑的策略前景,ii)强调在系统工程过程中进行可信设计干预的机会,以及 iii)引入“策略即服务”(PaaS)框架的概念,人工智能系统工程师可以随时应用该框架来解决开发和(最终)运行时过程中的模糊信任问题。我们设想,PaaS 方法将策略设计参数的开发和策略标准的维护工作转移给策略专家,这将使自然界的智能系统具有运行时信任能力。
摘要:在这项工作中,提出了一种新型的MEMS振动陀螺仪的机械放大结构,目的是提高其灵敏度。该方案是使用微机械V形弹簧系统实现的,作为挠度放大机制。首先证明了该机制的有效性,用于电容式完全脱钩的四元陀螺仪。概念证明垂直轴机械放大的陀螺仪,已设计,模拟和制造365%的放大系数,并在本文中介绍了评估的结果。实验结果表明,陀螺仪的固有频率为11.67 kHz,全尺度测量范围为±400° /s,最大非线性为54.69 ppm。偏置稳定性为44.53° /h。实验结果表明,这种四边形陀螺仪的性能是将来达到导航等级的一种非常潜在的新方法。
事物(IOT)。[9]这些库存的设备的核心是建立高度适应性和皮肤的功能元素,能够通过日常生活的各个方面或通过响应Electials的各个方面或跟踪位置,运动和手势来对环境变化进行重新变化,[2,10]磁性,[2,6,8,11],[5,6,8,11] [5,6,8,11]和Thermal [12]和Thermal [13]。解决方案可以加工的印刷技术对于实现人类交互式和高度合规的设备非常有吸引力,因为它们简单,成本效益且适应于自由定义的功能元素的各种材料。[14-17]关于印刷电子产品的最新报告揭示了可以准备机械性能的可拉伸印刷传感器(应变,力,压力和弯曲),[18-21],这些传感器与人工互动系统,人工智能,先进的ProSthetics和Humanoid Robots中的人际关系系统中有关。要实现合规的电子产品,[22]最先进的方法依赖于直接在超薄聚合物箔上的有机和无机材料的薄膜沉积和光刻处理。[23–25]朝着全印刷的可拉伸电子产品[19,26]和可拉伸的薄膜磁通电子的方向取得了令人兴奋的进度。[27]但是,尚未证明将磁电传感器的可打印和伸展质量结合在一起。这些高领域对于皮肤设备是不可接受的,因为世界卫生组织(WHO)规定的持续展示限制小于40 mt。我们在各种机械上不可察觉的功能元件中,符合磁场传感器及其动作距离距离,可以依靠周围的磁场启用无触摸的对皮肤间的活动,用于从人机相互作用到非vasive医学诊断的应用。[5,11,28]与基于箔的磁电机,印刷的磁敏感设备的出色机械和磁化性能形成鲜明对比[29-33],相当僵硬,支持弯曲到半径超过1 cm [30],到目前为止,它已用于检测高磁场的高磁场。[34,35]即使对于最佳的印刷磁场传感器,这些传感器基于巨型磁场(GMR)效应,相关场范围的灵敏度也很差。
摘要限制了某些危险物质(ROHS)的使用限制于2006年7月1日生效。设备程序需要从其供应商那里获得材料声明或合规证书。某些豁免该法规,例如RF端口和某些医疗应用,仍然允许使用不合同材料的LTCC产品生产LTCC产品。但是,对没有镉或铅的LTCC产品的需求不断增长。自2006年底以来,杜邦(Dupont)一直为已建立产品提供无CD的AU糊状物。用于连接的内部和外部导体,AU糊5734经常使用LTCC制造商使用。替代的ROHS填充糊为CDF34型。对于销钉,选项卡和框架悬挂,AU糊剂5062D(粘附层)和5063D(屏障层)的组合是MSE的LTCC零件的首选。无CD版本是5062E型和5063E。MSE根据一个全面的测试计划验证了所有三个新糊状,该计划包括五个不同的CDF34测试布局,另外两个用于5062E和5063E。同时构建了Corre-sponds的参考部分,以具有确切的比较功能。CDF34的验证包括对键合的研究以及电阻终止,VIA和粘合键组件的可靠性。此外,测试了横向迁移(绝缘电阻)。5062E和5063E验证包括焊接组件的可靠性,焊接垫中的VIA以及框架和底板的焊接。不同的测试单元包括视觉检查,横截面,初始测量和热循环后的结果,热休克,温度和湿度暴露。
合成。研究自然界中发现的结构已经并将继续推动 3D 制造策略的发展。近年来,该领域的进展取得了巨大的进步,如今相对容易制造的结构在几十年前似乎是不可能的。新的发展,特别是在由软材料或包含软硬成分的混合结构制成的结构构造方面不断涌现。创造模仿生物材料的特性和功能或可以与生物材料相互作用、探测和控制生物材料的软合成结构继续推动该领域的研究。这里,我们重点介绍了文献和我们研究的最新贡献,并利用报告强调了在软材料功能集成到复杂形式的 3D 架构的背景下,软材料化学进展的机会和当前需求。本文考虑的方法旨在强调异质集成的最新范例——利用定向组装和打印来构建复杂功能复合材料结构的 4D 制造方法。
摘要 纤毛病是一种广泛的遗传性发育和退行性疾病,与运动纤毛或原发性非运动纤毛的结构或功能缺陷有关。已知的纤毛病致病基因约为 200 种,虽然基因检测可以提供准确的诊断,但接受基因检测的纤毛病患者中有 24-60% 并未得到基因诊断。部分原因是,根据美国医学遗传学学院和分子病理学协会的现行指南,很难对由错义或非编码变异引起的疾病做出可靠的临床诊断,而这些变异占疾病病例的三分之一以上。PRPF31 突变是退行性视网膜纤毛病常染色体显性视网膜色素变性的第二大常见病因。在这里,我们提出了一种高通量高内涵成像检测方法,可定量测量 PRPF31 错义变异的影响,符合最近发布的临床变异解释基线标准体外测试标准。该检测利用了使用 CRISPR 基因编辑生成的新型 PRPF31 +/– 人视网膜细胞系,以提供具有明显更少纤毛的稳定细胞系,其中表达和表征了新的错义变体。我们表明,在零背景下表达纤毛病基因错义变体的细胞的高内涵成像可以根据纤毛表型表征变体。我们希望这将成为临床表征意义不明确的 PRPF31 变体的有用工具,并可以扩展到其他纤毛病中的变体分类。