摘要:自组装功能化纳米粒子是多种潜在应用的焦点,特别是用于分子级电子设备。这里,我们对 10 纳米金纳米粒子 (NPs) 进行了自组装实验,这些粒子由一层致密的偶氮苯-联噻吩 (AzBT) 分子功能化,目的是构建具有忆阻特性的光可切换设备。我们制造了由 NP 自组装网络 (NPSAN) 组成的平面纳米设备,这些纳米电极与纳米电极接触,纳米电极之间的电极间隙从 30 到 100 纳米不等。我们展示了这些 AzBT-NPSAN 中光诱导的电导可逆切换,创下了高达 620 的“开/关”电导比记录,平均值约为。 30,85% 的器件的比例超过 10。对纳米颗粒表面化学吸附的分子单层之间的界面结构和动力学进行了分子动力学模拟,并将其与实验结果进行了比较。结果表明,接触界面的性质与分子构象密切相关,对于 AzBT 分子,可以通过明确定义波长的光照射在顺式和反式之间可逆地切换。与通过导电 c-AFM 尖端接触的平面自组装单层上进行的实验相比,分子动力学模拟为实验观察到的两个异构体之间开/关电流比降低提供了微观解释。
摘要:单壁碳纳米管(SWCNT)和底物之间的界面热电导很少被表征和理解,这是由于在探测跨这样的NM范围接触的能量传输方面的重大挑战。在这里,我们报告了<6 nm厚的SWCNT束和Si底物之间的界面热电导。用于测量能量传输状态分辨的拉曼,其中拉曼频谱在连续波(CW)下变化,并测量20 ns脉冲激光加热,用于在稳定和短暂的热传导下通过界面热导电持续的稳定和短暂热传导的热响应。由于样品的激光吸收和温度升高不需要知识,因此测量可以实现极端的能力和置信度。在SWCNT束的三个位置中,测量界面热电阻为(2.98±0.22)×10 3,(3.01±0.23)×10 3,以及(1.67±0.27)×10 3 K M W - 1,对应于范围内的热电导率(3.3-3-6.0-×10)。我们的分析表明,SWCNT束和SI基板之间的接触松散,这主要归因于样品的明显不均匀性,这是通过原子力显微镜和拉曼光谱法解决的。对于假定的接触宽度约为1 nm,界面热电阻的阶将为10-6 W m-2 k-1,与报告的机械去角质石墨烯和二维(2D)材料一致。
手稿于2020年7月26日收到;修订于2020年10月13日和2020年10月19日; 2020年10月22日接受。2020年11月16日出版日期;当前版本的日期,2020年11月24日。This work was supported in part by the Applications and Systems-driven Cen- ter for Energy-Efficient Integrated Nano Technologies (ASCENT), one of six Centers in the Joint University Microelectronics Program (JUMP), a Semiconductor Research Corporation (SRC) Program sponsored by DARPA, and in part by the Air Force Office of Scientific Research.本文最初在2020年VLSI技术的虚拟研讨会上发表。本文的评论由编辑M. Kobayashi安排。(通讯作者:Peide D.ye。)Yiming Qu和Junkang Li与Birck纳米技术中心,电气和计算机工程学院,普渡大学,西拉斐特的普渡大学,美国47907,以及电子工程与信息科学学院,Zhejiang University,Zhejiang University,Hangzhou 310027,中国。Mengwei Si,Xiao Lyu和Peide D. Ye在美国47907的Purdue University,Purdue University,Purdue University,Purdue University,美国47907的Birck Nanotech-Notech-Notech-Notech-Notech-Notech-Notech中心(电子邮件:yep@yep@purdue.edu)。本文中一个或多个数字的颜色版本可在https://doi.org/10.1109/ted.2020.3034564上找到。数字对象识别10.1109/ted.2020.3034564
点的扭转角可以通过改变费米能量、拓扑绝缘体收缩宽度和量子阱带隙来进行调控。27但目前还没有关于分子器件扭转角的系统研究。本文基于非平衡格林函数(NEGF)结合密度泛函理论(DFT),28,29研究了由两个V型锯齿边石墨烯纳米带(GNR)电极连接不同扭转角的CuPc分子构成的CuPc分子器件的量子输运性质。通过改变扭转角可以控制器件的局域自旋态和相关的量子输运性质。结果表明,扭转双层CuPc分子(TTBCPM)的HOMO-LUMO能隙、自旋滤波效率(SFE)和自旋相关电导随扭转角变化。当q较大时,电导和SFE的变化趋势几乎相反。当q=0时电导最大,当q=60时SFE最大,提出了这些现象的物理机制,并通过分析透射光谱、分子能级谱和散射态,进一步理解了具有扭转角的量子传输现象。
摘要囊性纤维化跨膜电导调节剂(CFTR)阴离子通道和上皮Na +通道(ENAC)在许多上皮组织中在跨层离子和流体转运中起着重要作用。两个通道的抑制剂都是在体外定义其生理作用的重要工具。然而,两个常用的CFTR抑制剂CFTR INH -172和GLYH-101(也抑制非CFTR阴离子通道),表明它们不是CFTR的特异性。然而,迄今为止,这些抑制剂对上皮阳离子通道的潜在靶向效应尚未解决。在这里,我们表明,两个CFTR阻滞剂都以许多研究人员的常规使用浓度造成了对商店经营的钙进入(SOCE)的显着抑制,这些钙进入(SOCE)是时间依赖性,可逆的,并且独立于CFTR。斑块夹的实验表明,CFTR INH -172和GLYH-101都引起了ORAI1介导的全细胞电流的显着块,确定它们可能通过调制该Ca 2+释放激活的Ca 2+(CRAC)通道来减少SOCE。除了对钙通道的脱靶影响外,两种抑制剂在异武卵母细胞异源表达后都显着降低了人αβγ-ENAC介导的电流,但对Δβ-ENAC功能的影响有所不同。分子对接确定了两个CFTR阻滞剂的ENAC细胞外域中的两个假定结合位点。一起,我们的结果表明,在使用这两个CFTR抑制剂来剖析CFTR和潜在的ENAC在生理过程中的作用时,需要谨慎。
1多功能磁光光谱技术中心(上海),纳米光学和高级工具工程研究中心(教育部),材料和电子科学学院材料系,东部中国师范大学,上海,200241年,200241年,200241年,200241 China 3 School of Computer Science and Technology, East China Normal University, Shanghai 200062, China 4 ASIC & System State Key Laboratory, School of Microelectronics, Fudan University, Shanghai 200433, China 5 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China 6 Shanghai Institute of Intelligent Electronics & Systems, Fudan University, Shanghai 200433,中国
He XD, Goyal RK。CaMKII 抑制使膜超极化并通过关闭肠道平滑肌中的 Cl 电导来阻断氮能 IJP。Am J Physiol Gastrointest Liver Physiol 303:G240–G246,2012 年。首次发表于 2012 年 4 月 26 日;doi:10.1152/ajpgi.00102.2012。— 氮能“慢”抑制连接电位 (sIJP) 的离子基础尚未完全了解。本研究的目的是确定钙调蛋白依赖性蛋白激酶 II (CaMKII) 依赖性离子电导在肠道平滑肌神经肌肉接头处氮能神经传递中的性质和作用。研究在豚鼠回肠中进行。使用改良的 Tomita 浴技术在同一细胞中诱导被动超极化电紧张电位 (ETP) 和因 sIJP 或药物治疗引起的膜电位变化。使用尖锐微电极在同一平滑肌细胞中记录膜电位和 ETP 的变化。在非肾上腺素能、非胆碱能条件下通过电场刺激以及嘌呤能 IJP 的化学阻滞引发氮能 IJP。超极化过程中 ETP 的改变反映了平滑肌中的主动电导变化。氮能 IJP 与膜电导降低有关。CAMKII 抑制剂 KN93(而非 KN92)、Cl 通道阻滞剂尼氟酸 (NFA) 和 K ATP 通道开放剂 cromakalim 使膜超极化。但是,KN93 和 NFA 与膜电导降低有关,而 cromakalim 与膜电导增加有关。在 NFA 诱导的最大超极化之后,未观察到与 KN93 或 sIJP 相关的超极化,表明 Cl 通道信号传导饱和阻断。这些研究表明,抑制 CaMKII 依赖性 Cl 传导可介导氮能 sIJP,从而导致 Cl 传导最大程度关闭。
量子点接触(QPC),这是具有量化电导的半导体二维电子系统中的收缩 - 是新型的Spintronic和拓扑电子电路的组合。QPC也可以用作量子纳米电路中的读数电子,电荷传感器或开关。与超导接触的短且无杂质的收缩是一种库珀对QPC类似物,称为超导量子点接触(SQPC)。由于维持其几何需求和接近统一的超导 - 触发器界面透明度的挑战,此类量子设备的技术发展已延长。在这里,我们开发了先进的纳米构造,材料和设备工程技术,并报告了纳米级混合SQPC阵列的创新实现,该阵列具有分开的栅极技术在半导体的2D电子系统中。我们利用了量子井的特殊门可调性,并证明了混合INGAAS-NB SQPC中电导量化的第一个实验观察。我们观察到在单个芯片中制造的多个量子纳米版本中的零磁场可重复的量化电导率,并系统地研究了在低和高磁场上SQPC的量子运输,以实现其在量子元学中的潜在应用,以实现极为准确的电压标准和缺陷量化技术。
摘要 了解在辨别性恐惧条件反射过程中皮肤电导反应 (SCR) 个体差异的神经基础,可能有助于我们理解恐惧相关精神病理学中的自主神经调节。先前的兴趣区 (ROI) 分析表明杏仁核参与调节条件性 SCR,但缺乏全脑分析。本研究使用来自双胞胎 (N = 285 名个体) 的大型功能性磁共振成像研究的数据,检验了在辨别性恐惧条件反射过程中 SCR 对社会刺激的个体差异与整个大脑的神经活动之间的相关性。结果表明,条件性 SCR 与背侧前扣带皮层/前中扣带皮层、前岛叶、双侧颞顶交界处、右额岛叶、双侧背侧运动前皮层、右上顶叶和中脑的活动相关。ROI 分析还显示杏仁核活动与条件性 SCR 之间存在正相关性,这与之前的报告一致。我们认为观察到的 SCR 的全脑关联属于与显着性检测和自主神经内感受处理相关的大规模中扣带回-岛叶网络。该网络内活动的改变可能是条件性 SCR 和精神病理学自主神经方面个体差异的基础。
在半导体中情况有所不同。在反转层或侵蚀的二维电子气体中,费米波长可以是大的50 nm。这是两个比金属大的数量级,并且在当今的微生物技术范围内。谐振隧道研究已在二维电子气体的子微米大小的区域中构成了能量水平的ae> q.l MEV,并通过GAAS-(AL,GA)的栅极电极作为异质结构固定在静电上。7“ 9对于典型电容C£10〜15 f,在毫米kelvin温度下,一个然后häsE2 /c〜δε ^> kt。< /div。在这种制度中,库仑阻止的经典理论将被一个理论代替,其中包括能量谱的离散性的影响。这是本文中解决的问题。
